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Abstract names. 

The increasing use of digital documents, and the need to 
refer to them conveniently and unambiguously, raise an im- 
portant question: can one “name” a digital document in a 
way that conveniently enables users to find it, and at the 
same time enables a user in possession of a document to 
be sure that it is indeed the one that is referred to by the 
name? One crucial piece of a complete solution to this prob- 
lem would be a method that provides a cryptographically 
verifiable label for any bit-string (for example, the content, 
in a particular format, of the document). This problem has 
become even more acute with the emergence of the World- 
Wide Web, where a document (whose only existence may 
be on-line) is now typically named by giving its URL, which 
is merely a pointer to its virtual location at a particular 
moment in time. 

In the traditional world of paper documents, there arc 
usually reasonable guarantees of this connection. In the cast 
of printed books and magazines, large print runs that arc 
the result of single typesetting efforts make it easier to be 
confident that all copies of a printed document are the same, 
with a definite name printed in a conventional place in the 
document. Making a change to a paper document of any 
sort, even a small change, typically leaves forensic cvidcncc. 

Using a one-way hash function to call files by their hash 
values is cryptographically verifiable, but the resulting names 
are unwieldy, because of their length and randomness, and 
are not permanent, since as time goes on the hash function 
may become vulnerable to attack. We introduce procedures 
to create names that are short and meaningful, while at the 
same time they can persist indefinitely, independent of the 
longevity of any given hash function. This is done by naming 
a bit-string according to its position in a growing, directed 
acyclic graph of one-way hash values. We prove the security 
of our naming procedures under a reasonable complexity- 
theoretic cryptographic assumption, and then describe prac- 
tical uses for these names. An implementation of our naming 
scheme has been in use since January 1995. 

A characteristic feature of digital documents, by con- 
trast, is that they are easy to copy and to alter. The naming 
problem is especially troubling if the document exists only 
on-line and never in conventional paper-based form. For on- 
line documents, a useful naming scheme would allow users 
to employ the name to find documents, as well as to check 
the integrity of the documents that they find. A number of 
proposals have been made for such naming systems (see e.g. 
[SM 94, KW 95, BDf 951). These proposals address in dif- 
ferent ways the problem of how to “resolve” the name into 
a location where the document might be found. 

It is the integrity-checking problem that we address in 
thii work: how to make sure that the bit-string content 
of a given digital document is indeed the same u the bit- 
string that was intended. Heretofore, two different sorts of 
mechanisms have been proposed, digital signatures and one- 
way hash values. 

Having the author or publisher of a document compute a 
digital signature for its bit-string content is a reasonable use 
of cryptographic tools for this purpose. (See, for example, 
[R 95, M 941.) However, the abiity to validate many digital 
signatures requires the presence of a public-key infrastruc- 
ture, and the trustworthiness of the validation procedure 
relies on the assurance that the signer’s private signing key 
is indeed secure. For some on-line documents, the infras- 
tructure and these assurances may not be available. For 
long-lived documents, the security of the binding between 
a public key and the person or role of the putative signer 
becomes even more problematic. (A general solution to the 
latter problem is briefly described in $5.) 

1 Introduction 

Users of documents need to refer to those documents in or- 
der to keep records and in order to communicate with other 
users of the documents. In practice, users name their doc- 
uments in various ways. A name must be unambiguous, at 
least in the context of its use; this requires some connec- 
tion between the name and the integrity of the document it 
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Thus it would be useful to have an integrity mechanism, 
depending on the exact contents of the bit-string in question, 
that does not depend on the secrecy of a cryptographic key. 
A natural choice for such a mechanism is the use of a one- 
way hash function, naming any bit-string by its hash valnc. 
(See, for example, [BD+ 951.) However, while this method 
is intrinsically verifiable, there are several inconvenient lea- 
tures: 

l A desirable feature for the names given to a collection 
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of objects is that they be long-lasting, if not perma- 
nent.. (This is one of the functional requirements for 
URNS [SM 941.) But as technology advances, any par- 
ticular choice of a presumably one-way function for a 
naming scheme becomes less secure, so that it must be 
replaced (see [Dob 96a, Dob 96b]).r The unpleasant 
result is that the name of a long-lived document will 
need to change over time. 

l Hash values are too long for a human user to remember 
or even to communicate easily to another human being. 
(For esample, it is currently recommended that one- 
way hash functions compute outputs that are at the 
very least 128 bits long; this is the output length of 
MD5 [Riv 921. In a 6 bit/character encoding, this is 
22 alphanumeric characters long.) 

l The author of a bit-string document has no control 
over the form of its name. A one-way hash function 
produces a random-appearing bit-string of the appro- 
priate length as the hash value of a document. Thus, 
inconvenient as it may be for the author, there mill be 
no connection between the names of documents that 
are related to each other, either in form or in sub- 
stance. 

This paper presents a method for naming bit-strings that 
retains the verifiable security of hash-based names, while 
avoiding the constraints listed above, as well as avoiding the 
use of secret, cryptographic keys. The method is a variation 
on the digital time-stamping schemes of [HS 91, BHS 931. 
In summary, the essence of the new scheme is to keep a 
repository of hash values that depend on many bit-string 
inputs, and to name each bit-string by a concise description 
of a location in the repository to which it can be securely 
“linked” by a one-way hashing computation. 

An implementation of our naming scheme has been run- 
ning continuously since January 1995 [Sur 951. 

The rest of this paper is organized as follows. After tech- 
nical preliminaries in $2, including both a brief discussion 
of the wider problem of naming digital documents as well 
as a formal description of our sub-problem, we present our 
scheme and prove its security in $3. Motivated by the explo- 
sive growth of the Internet, we mention a number of possible 
applications of our scheme in $4. In $5, we describe a method 
for extending the lifetime of our digital names beyond the 
cryptographically secure lifetime of the hash functions used 
to compute them. Finally, we discuss several different sorts 
of practical implementation in $6. 

2 Preliminaries 

2.1 Naming digital documents 

A naming system for digital documents should perform (at 
least) two functions. It should help the user (1) to find the 
document named; and (2) to reassure himself or herself that 
a given document is indeed the correct one, i.e. that it is 
indeed a perfect copy of the document that was intended. 

To enable both these functions, the “name” could include 
both identification information as well as location informa- 
tion. System design may include procedures for registration 
of new documents, for finding a document given its name, 

‘For example, because of recent attacks on MDS, RSA Laborato- 
ries recommends that “in the future MD5 should no longer be imple- 
mented in signature schemes, where a collision-resistant hash function 
IS required” [Dob 96c]. 
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for updating a document’s location information, and for val- 
idating the integrity of a document. Typically, there is a 
server that “resolves” or translates a name into location in- 
formation, for example into a URL or a list of URLs. The 
name may include other information about the document, 
including such data as title, author, format, price, and ac- 
cess privileges. 

A large body of work has been devoted to the difficult 
problem of designing and building a naming system of this 
sort so that it is usable, useful, and reliable. In [SM 941 
a set of functional requirements is described for Uniform 
Resource Names (URNS), the names to be assigned by a 
naming system for resources on the Internet. A number 
of researchers have built naming systems, including, among 
others, [KW 95, BD+ 951. (This is by no means an exhaus- 
tive list.) 

In this work we propose a new method for the integrity- 
checking piece of naming systems for digital documents. All 
previously proposed systems that included mechanisms for 
checking the integrity of the bit-string or bit-strings that 
make up a digital document have used either digital signa- 
tures or one-way hash functions for this purpose. For certain 
applications, these methods have the problems described in 
$1 above. 

2.2 Hash functions 

The principal technical tool we use in this paper is that 
of a one-way hash function. This is a function compressing 
digital documents of arbitrary length to bit-strings of a fixed 
length, for which it is computationally infeasible to find two 
different documents that are mapped by the function to the 
same hash value. (Such a pair is called a collision for the 
hash function.) 

Practical proposals for one-way hash functions include 
those of MD5 [Riv 921, SHA-1 [NIST 941, and RIPEMD- 
160 [DBP 961. Though the actual security of these functions 
(i.e., the precise difficulty of computing collisions for them) 
is not known, they are now in more or less widespread use. 

Definition In a more theoretical vein, Damgird defined 
a family of collision-free hash functions to be a family { Hk}k 
of sets of functions (indexed by a security parameter k) with 
the following properties: 

1. Each Hk is a set of functions h : (0, l}* --, (0, l}” that 
are computable in polynomial time. 

2. Given Ic, it is easy to choose h E Hk at random. 

3. It is computationally infeasible, given a random choice 
of one of these functions, to find a collision for the 
function. More precisely, for any polynomial algorithm 
A, for any positive constant c, 

Pr[h + Hk; (2, z’) * A(h) : x # z’, h(z) = h(d)] < k-” 

for sufficiently large k. 

Damgard gave a constructive proof of their existence, on 
the assumption that there exist families of one-way “claw- 
free” permutations [Dam 871. More generally, any “one-way 
group action” is sufficient [BY 901. Concretely, the construc- 
tion can be based on the difficulty either of factoring or of the 
discrete logarithm function. (As usual, the collision adver- 
sary A in condition (3) above can be uniform or non-uniform, 
depending on the precise form of the hypothesis made on the 
computational complexity of the underlying problem.) For 
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a variety of reasons, none of the known theoretical construc- 
tions of collision-free hash functions are practical. 

In practice, the infeasibiity of computing collisions for a 
particular hash function depends on the current state of the 
art, both the current state of algorithmic knowledge about 
attacking the function in question, as well as the compu- 
tational speed and memory available in the best current 
computers. As the state of the art advances, it is likely 
that a function that was once securely one-way will even- 
tually cease to be so. For example, Dobbertin’s recently 
announced attacks on MD4 and MD5 have considerably re- 
duced the community’s confidence in the strength of these 
two functions [Dob 96a, Dob 96b, Dob 96c]. In $5 below we 
offer a solution to the problem this poses for certain practi- 
cal systems whose real-world security depends on the actual 
infeasibility of specific computational tasks. 

We refer the reader to [Pre 931 for a thorough discussion 
of one-way hash functions. 

2.3 Theoretical model 

We emphasize that thii is a theoretical description of the 
problem of verifiably “naming” bit-strings, which is only a 
piece of the larger problem of naming digital documents. 

The setting for our problem is a distributed network of 
parties. The network may include a server S as well as a 
repository R; parties may query the repository, asking for a 
copy of a particular item it contains. 

Definition A naming scheme for this setting consists of: 

a security parameter k; 

a polynomial-time naming protocol N, possibly requir- 
ing interaction with the server S, taking as input a 
bit-string x, and producing as output a name n for x, 
a certificate c, and the addition of items to the repos- 
itory R; and 

a polynomial-time validation protocol V, that takes as 
input a triple (x, n, c) and the result of a query to R, 
and either accepts or rejects its inputs. 

If (n, c) is the output of an invocation of N on input z, then 
V accepts the input (2, n, c) when it is accompanied by a 
correct response to a query to R. 

It is possible, of course, to specify a naming scheme that 
does not require a server or a repository. In that case, the 
naming protocol and the validation protocol may simply be 
algorithms that any party in the network may invoke with- 
out interacting with outside parties. 

Definition A counterfeiting adversary to anaming scheme 
[N, V, s] is a (possibly probabilistic) algorithm A that per- 
forms as follows. Given I; as input, A produces (polyno- 
mially many) naming requests x1, x2,. . .; for each 2; A is 
given the output of N(z;). The request zi+r may be com- 
puted after A has received the response to its ith request. 
In addition, A may make (polynomially many) queries to 
R. Finally (after q naming requests, say), A’s output is of 
the form (z, n, c). This output is a successful counterfeit if 
x # xt (for i = 1. . . q) and V accepts (x, n, c) (after a correct 
response to any queries to R). 

Definition A naming scheme is secure if for any poly- 
nomially bounded counterfeiting adversary A and for any 
positive constant c, A’s success probability on input k is 
less than k-’ for sufficiently large I;. 
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To illustrate our definitions, here is a simple example of 
a naming scheme, where the only role of the server is to 
announce its random choice of a hash function lr E 11~~. The 
naming procedure is just N(x) = h(x) with no certificates, 
and V accepts (x, n) if n = h(x). It is clear that this dclines 
a secure naming scheme as long as Hk is the kth set in a 
family of collision-free hash functions. 

We remark that the roles of S as trusted server and R 
as trustworthy repository in these definitions are just an 
artifact of how we have chosen to present and to analyze 
our naming schemes, allowing a clean separation between 
issues of the security of the scheme itself and issues of how 
it might be implemented in practice. I 

2.4 Digital time-stamping 

Our solution to the naming problem builds on the work of 
[HS 911 and [BHS 931, w h ose authors describe several pro- 
cedures with which users can certijy (the bit-string contents 
of) their digital documents, computing for any particular 
document a time-stamp certificate. Later, any user of the 
system can validate a document-certificate pair; that is, he 
or she can use the certificate to verify that the document 
existed, in exactly its current form, at the time asserted in 
the certificate. It is infeasible to compute an illegitimate 
document-certificate pair that will pass the validation pro- 
cedure. 

Because we use it directly in our naming scheme, we 
summarize here one digital time-stamping scheme. A ccn- 
tral “coordinating server” receives certification requcsts- 
essentially, hash values of files-from users. At regular in- 
tervals, the server builds a binary tree out of all the requests 
received during the interval, following Merkle’s tree authcn- 
tication technique; the leaves are the requests, and each 
internal node is the hash of the concatenation of its two 
children [Merk SO]. The root of this tree is hashed together 
with the previous “interval hash” to produce the current in- 
terval hash, which is placed in a widely available repository, 
The server then returns to each requester a time-stamp ccr- 
tificate consisting of the time at which the interval ended, 
along with the list of sibling hash values along the path lcad- 
ing from the requester’s leaf up to the interval hash, each 
one accompanied by a bit indicating whether it is the right 
or the left sibling. The scheme also includes a validation 
procedure, allowing a user to test whether a document has 
been certified in exactly its current form, by querying the 
repository for the appropriate interval hash, and comparing 
it against a hash value appropriately recomputed from the 
document and its certificate. 

It is noteworthy that the trustworthiness of the c&ill- 
cates computed in this scheme depends only on the integrity 
of the repository, and not (for example) on trusting that a 
particular private key has not been compromised or that 
a particular party’s computation has been performed cor- 
rectly. 

3 A naming scheme for bit-strings 

Next we describe a naming scheme for a network that in- 
cludes a server S and a repository R. Many executions of 
N and of V may be performed concurrently in the network. 
We assume that there exists a family { Hk},: of collision-frco 
hash functions. Given an initial choice of security param- 
eter I;, S announces to all parties its random choice of a 
one-way hash function h c Hk. Our scheme is a variation 
on the time-stamping scheme described in $2.4 above, with 
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S playing the role of the coordinating server that computes 
certificates in response to requests and makes additions to 
the repository R. 

We abbreviate a bit-string’s certificate by omitting the 
list of hash values, leaving only a pointer to the relevant 
interval hash (for example, the time at which it was com- 
puted), and an encoding of the position of the request in 
t.he tree for that interval (for example, the sequence of left 
or right bits). It is thii abbreviation that we propose to use 
as the name of the bit-string. 

More explicitly, an invocation of N on input 2: begins 
with the comput.ation of y = h(z), and the submission of y 
to S, which includes y as one of the leaves of the tree being 
built in bhe current time interval. At the end of the interval, 
having built a tree of height 1 (that includes the previous 
interval hash), S places the root of the tree in R as the 
current. interval hash with label t, say. S responds to the re- 
quest. by returning the certificate c = [t; (21, bl), . . . , (21, bl)], 
where each b, = L or R. Finally, the name returned by N 
for argument x is It = [t; bl, . . . , bl]. 

One uses the entire certificate in order to validate that 
a particular string correctly names a particular bit-string 
document, first by checking that the putative name was cor- 
rectly extracted from the certificate, and then by following 
the usual validation procedure for the document-certificate 
pair (recomputing the path from the leaf to the root of the 
tree). 

To be precise, V operates as follows, given as inputs a 
document x, a name n = [t; bl , . . . , bl], and a certificate c = 
[t’; (a I a;), -. - I (zl, bi)]: First, V checks that t = t’ and that 
each b, = ai. Next, V computes yl + h(x) and then (for 
i-1 . . . I) if bi = L then yi.+l + h(zi * yi) else if b, = R 
then ya+l - h(yi . G). Finally, V queries R for the hash 
value stored at location t, and checks that it is identical to 
yl+l. V accepts if all these checks are satisfied and rejects 
otherwise. 

Figure 1 below illustrates the tree built by S for a time 
interval during which it received eight requests, containing 
the eight hash values a, b, c, d, e, f, g, and h. In this diagram, 
ab is the hash of the concatenation of a and b, etc., and IHt 
and IHI- are the respective interval hashes for the current 
and the previous intervals. The certificate computed by S 
for the third request (the one containing hash value c), for 
example, is t.he following: 

[t; (4 R), (4 L), (eh, R), (IL-l, L)]. 

3.1 Security 

The security of thii naming scheme follows directly from the 
infeasibility of computing hash collisions for functions from 
{HJ:}~, since the only possible counterfeit names include 
hash collisions. In essence, if x is a bit-string on which 
N was never invoked during a run, any triple (x, n, c) that 
V will accept, (after the correct response to a query to R) 
will include a hash collision for the function h announced by 
S at the beginning of the run: either x itself or one of the 
hash values zt in c (when combined on the left or the right 
with y,) collides with another argument to h whose hash 
value was computed during the run. Therefore we have the 
following theorem. 

Theorem 1 If { Hk}k is a family of collision-free hash func- 
tions, then the naming scheme [N, V, S] described aboue is 
secure. 

Because the reduction in the proof is so direct, it is easy 
to give an “exact security” analysis (cf. [Lev 85, BKR 941) of 

the strength of this scheme, whether the hash functions used 
are from the collision-free family provided by a theoretical 
cryptographic assumption or rather practical hash functions, 
as in the implementations described in $6 below. 

3.2 Variations on the scheme 

Of course, the secure verifiability of the names assigned by 
the scheme described above does not depend on the partic- 
ular combination of binary trees and linked lists used. By 
systematically invoking the hash function on pairs or or- 
dered lists of hash values, new hash values can be computed 
from old ones so as to form a directed acyclic graph (by di- 
recting an edge from each of the inputs to the hash value 
output). Design considerations (including those discussed 
in $6.1 below) may dictate several different combinatorial 
structures for this directed graph. 

Whatever the structure of the growing graph of hash 
values, it is secured by making portions of the graph widely 
witnessed and widely available. To insure the verifiability 
of the names, it suffices that every document in the naming 
structure be linked by a directed path to a widely witnessed 
hash value; a standard ordering of the incoming edges at 
each node can be used to encode the path. Then the name 
of a document is given by this encoding of its location in the 
graph, together with a pointer to the hash value at the end 
of the path, and the argument of Theorem 1 applies. 

For example, in one variation of the scheme described 
above, a list of documents may be used to build a local tree 
(following Merkle, again), whose root is sent off in turn as a 
request to the coordinating server. The location information 
for a document in this “tree-of-trees” scheme can be written 
as a position in the server’s tree followed by a position in 
the local tree. 

In another variation, the widely witnessed hash values 
in the repository could consist simply of a linked list (as 
in the simple linking scheme of [HS 911). In this case the 
location information for a document is a simple pointer into 
the repository. 

4 Applications 

The problem of naming digital documents might have seemed 
like a curiosity only a few years ago. However, with the 
growth in use of the Internet, more and more people need to 
be able to refer confidently to meaningful bit-sequences. The 
problem is now a matter of immediate practical concern. 

The problem has become especially acute with the emer- 
gence of the World-Wide Web. Jumping from one URL 
(Uniform Resource Locator) to the next in a sequence of 
WWW documents may seem at first to be exactly analo- 
gous to following a bibliographic reference in a traditional 
scholarly paper. In fact it is something quite different: a 
URL is only a pointer to a location, with no guarantee that 
what a user finds there today is the same reference that 
the author originally intended. If on-line citations include 
secure names for the bit-string contents of the documents 
cited, then it is possible to traverse a path of citations with 
confidence that one is indeed following the authors’ inten- 
tions. This abiity would be especially useful for the many 
documents on the World-Wide Web that exist only on-line. 

In most electronic commerce systems, transaction records 
of all sorts are kept on-line, and it would be useful to have a 
cryptographically secure means of assigning serial numbers 
or tracking numbers to these records. 

31 

-.-~____-. -. - 



I 

IH 
t 

ah 

ad 

P 

/ 

eh 

ab cd 

A A A A 
a b c d e f 9 h 

Figure 1: 8-leaf tree for the example of $3. 
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Software code is another class of digital document for 
which it would be useful to have an easy way for a short 
name to carry a guarantee of integrity. A user who down- 
loads software (along with its naming certificate) from a site 
on the Net can be sure of its integrity if he or she is able to 
check that the code is correctly named by a short string of 
letters and numbers. Here, of course, bit-string equality is 
eractly t.he point. The great strength of using secure names 
in thii application is that the short name of a program is 
considerably easier to distribute widely and robustly than 
t,he program itself. (It is also easier to distribute reliably 
than the sort of public-key infrastructure information that 
is required in order to use digital signatures in order to val- 
idate the integrity of code.) 

For another example of a type of large digital document 
whose integrity matters a great deal, consider the case of ge- 
netic data. Scientists now routinely download others’ data 
sets for use in their own research. The use of our naming 
scheme would allow the user to be sure of the data’s in- 
tegrity, as well as providing a convenient and verifiable way 
to cite the data in published descriptions of the work that 
was done with it. 

5 Long-lived names 

The technique described in [BHS 931 for renewing crypto- 
graphic certifications of authenticity applies directly to the 
certificates of the present naming scheme. 

The renewing process works as follows. Let us suppose 
that an implementation of a particular time-stamping sys- 
tem is in place, and consider the pair (z,C), where C is a 
valid time-stamp certificate (in thii implementation) for the 
bit,-string X. Now suppose that an improved time-stamping 
system is implemented and put into practice-by replacing 
the hash function used in the original system with a new 
hash function, or even perhaps after the invention of a com- 
pletely new algorithm. Further suppose that the pair (2, C) 
is time-stamped by the new system, resulting in a new cer- 
tificate C’, and that. some time later, i.e. at a definite later 
date, the original method is compromised. C’ provides evi- 
dence nob only that the document contents x existed prior 
to the time of the new time-stamp, but that it existed at the 
time stated in the original certificate, C; prior to the com- 
promise of the old implementation, the only way to create a 
certificate was by legitimate means. (It is similarly recom- 
mended that if a digitally signed document is likely to be 
important for a long time-perhaps longer than the signer’s 
key will be valid-then the document-signature pair should 
be time-stamped [BHS 93, Odl 95, HKS 951.) 

In our naming schemes, the verifiable name for the bit- 
string x is a standard abbreviation a for its original certifi- 
cate C. In order that a continue to be verifiable as a name for 
t, t,he certificate C should be renewed (as above) from time 
to time as new time-stamping systems are put in place. As 
long as this is done, a is still a verifiable name for x. There 
is now an addit,ional step to the procedure for validating the 
name: after checking that a is correctly extracted from C, 
one must follow the usual time-stamp validation procedure 
for the certificate, which now includes both the original- 
system validation of (x,C) and the new-system validation 
of [(x, C), C’]. We note that in practice thii additional vali- 
dation step would be automated, and would not at all affect 
the convenient use of a to name x. 
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6 Practical implementations 

A practical implementation of a naming scheme cannot use 
the known theoretical constructions of collision-free hash 
functions. If the decision is made to use practical one-may 
hash functions such as MD5, then users of the system do 
not need to trust the server’s random choice of a function 
h E Hk. (However, they do have to hope that the hash 
function chosen is one-way in practice; see section $5 for one 
way to allay users’ concerns on this score.) 

The naming scheme described in 53 above, based on the 
digital time-stamping scheme described in $2.4, was imple- 
mented by Surety Technologies, and has been in continuous 
commercial use since January 1995. The implementation 
uses practical hash functions; SpecificaIly, the current im- 
plementation uses h(x) = (MD5(x),SHA(x)) as the hash 
value for any argument x. A number of supplemental mech- 
anisms are employed in order to maintain the integrity and 
wide distribution of the repository [Sur 951. 

The names assigned by our scheme are indeed concise, 
growing essentially as slowly as possible while still providing 
unique names. If the repository contains n interval hashes, 
and no more than m naming requests are received during 
each interval, the names can be written with at most lg, nm 
bits. Just to give a numerical example, a repository repre- 
senting a thousand requests per minute for the length of a 
century requires 36-bit names; in the MIME encoding (six 
bits per alphanumeric character) such a name can be jotted 
down with six characters, while hash-value names of this 
length are completely insecure. 

6.1 Meaningful names 

There are several variations of our naming scheme that allow 
an author a fair measure of control over the names of his or 
her documents, so that the author can choose a verifiable 
name that is meaningful in one or another useful way. 

First, and most obviously, observe that in the scheme 
described in detail in $3 a convenient way to encode the 
location in the repository to which a document’s contents 
are linked is by the date and time at which the interval 
hash at that location was computed. Instead of (e.g.) a 
MIME encoding of the number of seconds since a moment 
in early 1970 (Unix standard time), it would often be useful 
to express at least a part of this date and time in human- 
readable form. 

In a slight variation, we can allow “personalized” naming 
requests, as follows. Suppose that the repository items are 
formatted in a standard way every day, and let F(e) denote 
any standard mapping from ASCII-encoded strings to the 
list of daily repository locations. When the server receives a 
personalized naming request that includes the ASCII string 
s, the request is held until the appropriate moment in the 
day and then linked to the widely witnessed hash value 
stored at location F(s); in this way, s is made to be part of 
the name of the documents included in those special nam- 
ing requests. Thus, for example, the author of The History 
of Computers in Zurich can arrange for the verifiable name 
of its bit-string contents to have the form [“The History of 
Computers in Zurich” date suffix], where suffix includes 
a few bits of disambiguating information that distinguishes 
this request from all others that mere linked to the same 
repository location. 

In another example, consider the tree-of-trees variation 
briefly mentioned in $3.2. An author can name a multi-part 
document by placing the contents of each successive part at 
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consecutive leaf nodes of a local tree. The resulting request 
to the server gives the consecutive parts of the document 
consecutive local positions and therefore consecutive names. 
Furthermore, the other portions of these consecutive names 
are identical, explicitly encoding the fact that they are parts 
of the same document. And local trees can have sub-trees, so 
that our historian can arrange to name the ith section of the 
jth chapter of his masterpiece [“The History of Computers 
in Zurich” infix if, for all appropriate pairs (i,j). 

More complicated ways of structuring the parts of a doc- 
ument can similarly be encoded in the verifiable names as- 
signed by our naming scheme. Note that conventional nam- 
ing schemes do allow for encoding document structure into 
names, but not in a verifiable manner. 

In another variation, a table of contents for a long or 
complicated multi-part document can be included in a stan- 
dard place in the request-for example, as its last piece. The 
table of contents may contain more or less detailed descrip- 
tions of the parts of the document. At a later time, together 
with a list of documents to be authenticated and their cer- 
tificates, such an authenticated table of contents can be used 
to verify (1) that each document in the list is an exact copy 
of one that was registered with the table of contents, and 
(2) that none of the documents in the list are missing. 
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