UPTEC F 17023

Examensarbete 30 hp
Juni 2017

UPPSALA
UNIVERSITET

Blockchain Technology and Smart
Contracts

Privacy-preserving Tools

Jonatan H. Bergquist

UPPSALA
UNIVERSITET

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besoksadress:
Angstrémlaboratoriet
Lagerhyddsvagen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 — 4713003

Telefax:
018 — 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Blockchain Technology and Smart Contracts:
Privacy-preserving Tools

Jonatan H. Bergquist

The purpose of this Master's thesis is to explore blockchain technology and smart
contracts as a way of building privacy-sensitive applications. The main focus is on a
medication plan containing prescriptions, built on a blockchain system of smart
contracts. This is an example use case, but the results can be transferred to other
ones where sensitive data is being shared and a proof of validity or authentication is
needed. First the problem is presented, why medication plans are in need of
digitalisation and why blockchain technology is a fitting technology for
implementing such an application. Then blockchain technology is explained, since it
is a very new and relatively unfamiliar IT construct. Thereafter, a design is proposed
for solving the problem. A system of smart contracts was built to prove how such
an application can be built, and suggested guidelines for how a blockchain system
should be designed to fulfil the requirements that were defined. Finally, a

discussion is held regarding the applicability of different blockchain designs to the
problem of privacy-handling applications.

Handledare: Prof. Dr. Krcmar, Dr. M. Dapp, Dr. M. Buschle
Amnesgranskare: Dr. Tjark Weber

Examinator: Dr. Tomas Nyberg

ISSN: 1401-5757, UPTEC F 17023

Acknowledgments

I would like to thank my supervisors Dr. Marcus Dapp of the Technical University
of Munich and Dr. Markus Buschle of zeb.rolfes.schierenbeck.associates GmbH.
Without their guidance this thesis would not have been possible. I would also like
to thank my subject reader Dr. Tjark Weber of Uppsala University for providing
valuable thoughts on research methodology, direction and for proof-reading. Finally
I want to thank my parents, Prof. Dr. J. Bergquist and Dr. C. Bergquist for always
encouraging my curiosity and for being my role models in research and most other

topics of life.

Contents

Acknowledgments
List of Figures
List of Tables

1 Introduction
1.1 Motivation

1.2 Purpose and research questions

1.3 Limitations.
1.4 Relatedwork.

2 Technical Background
21 Cryptography

2.1.1 Basic terminology . .

2.1.2 Hash functions, private- and public-key cryptography

2.1.3 Digital signatures . . .
2.2 Blockchain Technology

2.2.1 Bitcoin - the first blockchain
2.2.2 Post-Bitcoin blockchains
2.2.3 Permissions and specialisation
224 Smart Contracts and Ethereum

22,5 Consensus algorithms

3 Implementation

3.1 User stories and requirements

ii

vi

Ul b W R

o g &N &

10
10
12
13
14
16
18

22

iii

Contents

3.2 Design of the PoC .

321 Designoverview oo

322 System of smartcontracts oL
3.2.3 Data and variables on the blockchain

3.24 Supporting infrastructure and governance

4 Evaluation

4.1 Description of evaluation criteria

4.2 Fulfilment of evaluation criteria

42.1 Potential security and privacy exploits

43 OQutcome

5 Conclusion
51 Summary of results

5.2 Discussion

5.2.1 Generalisation and extension into other domains

5.2.2 Future work

Bibliography

34
34
35
35
37

38
38
39
39
40

41

iv

List of Figures

2.1 Division of types of cryptographic tools. Reproduction of Figure 1.1 in
(Alfred J. Menezes, 1996) 7

3.1 Overview of different users and their interactions with the blockchain

and system of smart contracts which exist on the blockchain. 24
3.2 High-level system overview of the EMP PoC. The figure is not exhaus-

tive and is simplified for sake of relevancy. Visualisation technique

based on (Brown, 2016) 26
3.3 Diagram of how the starting-up activity for the system works. 30
3.4 Opverview of the system of smart contracts for the EMP PoC. Not

all smart contracts are included for sake of clarity and relevance.

Visualisation technique based on (Brown, 2016). 31

List of Tables

2.1

2.2

3.1

4.1

Generalised vs. Specialised blockchains and Permissioned vs. Permis-

sionlesso 15
Table of consensus algorithms 21
Table of user stories 23
Table of evaluation for PoC fulfilment of user stories. 36

vi

Chapter 1

Introduction

1.1 Motivation

Currently when someone is sick in Germany and most parts of the western world,
he or she goes to see a doctor at a private or public health institution. The doctor
then examines the patient and, if needed, prescribes medication, which the patient
can buy at a pharmacy. The list of medication is written on a special piece of paper
that only doctors are allowed to buy and thereafter stamped with a special stamp,
proving that a doctor has prescribed the medications. The patient then goes to the
pharmacy bringing the prescriptions with the pharmacist deciphers the handwriting
and validates the stamp. The safety of the patient is reliant on the doctor asking
and receiving the correct answer to, among other questions, what other medications
the patient is taking. The patient also mustn’t lose the prescriptions list or he or
she will have to return to the doctor once again. The pharmacist has to be able to
validate the stamp in a secure manner. The entire system is trusted to be safe against
fraud because it is relatively difficult to forge a prescription. Trust is also put in the
doctor’s ability to correctly perform the anamnesis, the asking of questions at the
beginning of a medical visit including questions about other drugs. When a patient
becomes sick or suffers as a consequence of medical treatment, it is called iatrogenic
illness. This can be injury upon examination, negligence, medical treatment errors
and unintended effects of medication. Medication errors or adverse drug events are
the most common cause of injury to hospitalised patients and are often preventable.
(Bobb, Gleason, & Husch, 2004). Of adverse drug events, prescribing errors are the
most common form of avoidable medication errors. (Hamid et al., 2016) In a study of

17808 prescriptions ordered during one week at a hospital, 1111 of those were shown

1 Introduction

to contain a prescribing error. Of those 1111, about 2% were classified as "likely to
have caused patient harm" (128 prescriptions) or "likely to cause need for monitoring"
(214 prescriptions). (Bobb et al., 2004) There is however, a modernisation happening,
in USA by April 2014, 70% of physicians were using electronic prescription methods
and 90% of pharmacies were enabled to accept such prescriptions. Notably, the
usage of so-called e-prescriptions has increased by at least 50 percentage points in
48 states from December 2008 until April 2014, (Gabriel MH, 2014). The change is
also happening in Germany with the introduction of the E-Health Act in January
2015. Among other things that the act encompasses, is an electronic medication plan
to be put to use by 2018 for all patients having three or more prescriptions. This is
meant to lower harmful interactions between medications by informing doctors of
what medications a patient is taking. However, in a study from July 2015 that aimed
to evaluate the accuracy of medication plans showed that only 6.5% of all medication
plans evaluated did not contain discrepancies. (Waltering, Schwalbe, & Hempel, 2015)
This calls for an increased unification of existing analog and digital systems and for
te development of a less error-prone model.

As the digitisation of public and private organisations evolves, customers and citizens
are exposed to new kinds of vulnerabilities. Instead of passport theft or bank robbery,
we are now worrying about hackers stealing identities or personal information,
(“JPMorgan Chase Hacking Affects 76 Million Households,” 2014). In such systems
there is a large need of immutability, identification and redundancy; e.g. no one
should be able to alter the prescriptions of a patient except for a doctor, there
should be no doubt about the identification of all participants in the system, and
there should not be a single point of failure. A traditional database system does
only partly fulfil these requirements and alternative technologies should therefore
be explored. In 2008 the basis for an immutable, cryptographically secured and
distributed database system was laid with the introduction of Bitcoin and blockchain
technology. (Nakamoto, 2008) Since the implementation of Bitcoin in 2009, other
applications of blockchain technology have emerged, mainly in the financial sector
but also with non-cryptocurrency related use cases. Blockchain as a stand-alone
technology, along with recent advances in computer science regarding secure multi-
party computation, was proposed by Zyskind et al. as a method for access-control

and the removal of trusted third parties when dealing with personal data. (Zyskind,

1 Introduction

Nathan, & Pentland, 2015) There has already been some exploration into the subject
of using blockchain technology for digitalising existing processes in the health care
industry. (Krawiec et al., 2016) Many high-level advantages to using blockchain for
electronic patient records (EPRs), without any deeper technical analysis, are put
forth in (Braxendale, 2016). Other applications than EPRs are explored in (Irving &
Holden, 2016) and in (Nugent, Upton, & Cimpoesu, 2016). It seems however that
the current solutions available are either inefficient because of how the consensus
mechanism is used in the blockchains, or that they are not secure and rely on the
trust of a third part (e.g. government, company etc.). In (van Dijk & Juels, 2010) a
very strong argument is made that privacy-preserving cloud-computing can never
be done using cryptography alone, but one must rely on "tamperproof hardware,

distributed computing, and complex trust ecosystems."

1.2 Purpose and research questions

The goal of this Master thesis is to show how blockchain technology and smart con-
tracts can be used to securely share and control personal information among parties
who do not necessarily trust each other. This will be proven by a proof-of-concept
application for the use case of electronic medical records (EMR). The results of the
investigation will have clear applicability to many use cases. The research goal can

be broken down into three research questions:

* Research question 1: What are the requirements for storage of prescriptions,
patient-, doctor- and pharmacy-profiles on a blockchain application for pre-
scriptions? To answer this question a literature-review will be performed, also
a study of the existing frameworks and technologies for data-storage (on- and
off-blockchain) will be executed. The latter part will be done by comparing

different technologies with the requirements of the application.

* Research question 2: How can the architecture of a blockchain application
for privacy-preserving data-sharing between known, but not necessarily trus-
ted, parties look like? This research question is focused on the architecture of

the blockchain application as a whole and attempts to evaluate it from a security

1 Introduction

perspective. The question will result in a collection of the most privacy-critical
parts of the application. If any parts are lacking, those parts will be rebuilt and
evaluated again and if the requirements identified in research question 1 were

enough to pass security tests, then no further development will be required.

* Research question 3: How can a blockchain application for prescriptions
handling be built in order to ensure that each patient has access control over
prescriptions, that only certified doctors can prescribe medications and that
pharmacies who sell medications perform controls over prescriptions? This
research question is focused on the access control part of the blockchain applica-
tion. To answer this question a literature-review will be performed. Existing
blockchain-based applications will be inspected and evaluated for requirements.
The results of the investigation will be a table or a list of technical require-
ments with building blocks providing these requirements as well as, potentially,
a schematic over the architecture connecting them. An argumentation will
be made to motivate why the requirements are needed and in fact the most
appropriate for the purpose of this thesis. Finally, the requirements will be
implemented in the artefact. The results will be evaluated according to (Hevner,
March, Park, & Ram, 2004)

1.3 Limitations

This PoC will strictly consist of the code necessary for the smart contracts, which
define most of the operational logic and basic permissions management. Considering
the time constraints of this thesis (approximately six months) and abundance of
existing blockchains, no blockchain will be programmed. However, in Section 3.2.4
and in 2.2.3, there is a discussion of blockchains design considerations for the exten-
sion of the PoC. The thesis discusses cryptography used in blockchains and some
additional encryption mechanisms are suggested for the PoC. These are however
relying on existing technologies and implementations and are not part of the smart
contracts code. One could also argue that other parties involved in the economics
and regulation of health care such as insurance companies, the Ministry of public
health or the medical products agency should be included. Although these types
of users are not implemented with their specific requirements, in the PoC, they are

1 Introduction

considered and discussed in Section 5.2. Another highly relevant subject, important
for the application of block-chain technology to handling of personal data such as in
the medication plan, are legal considerations. Since this is a technical thesis, most
legal requirements are not discussed but the ambition is that data privacy laws shall

be honoured.

1.4 Related work

Since the start of this thesis (August 2016), much related work has been done,
advances in blockchain technology and large open source efforts in development have
been made. (Zyskind et al., 2015), presents ENIGMA, a blockchain-based solution for
secure multi-party computations. They suggest using blockchains for permissions
management and for storing pointers to encrypted data, while the actual data is
hosted by a trusted, blind escrow service. (Kosba, Miller, Shi, Wen, & Papamanthou,
2015) lay the groundwork for a project called HAWK, a framework and compiler for
writing privacy-preserving smart contracts. (Kish & Topol, 2015) Propose in Nature
Biotechnology, the use of blockchain technology for managing patient data but do not
discuss a specific implementation or technical discussion. (Azaria, Ekblaw, Vieira, &
Lippman, 2016) design a modular system for storing electronic medical records on a
blockchain, they suggest a Proof-of-Work system for incentivising the participation
of doctors and hospitals in the system. Med-Vault (“Medical Records Project Wins
Top Prize at Blockchain Hackathon,” 2015) were present in the media but have not
published any details regarding their blockchain-EMR.

To the best knowledge of the author, there have been no functional, electronic

medical prescriptions based on blockchain technology built so far.

Chapter 2
Technical Background

In this section, we will give a brief introduction to, and explanation of some basic
concepts in cryptography, blockchain technology and related concepts such as smart
contracts. Thereafter we will give a description of existing and currently maintained,

related blockchain platforms.

2.1 Cryptography

Cryptography provides techniques for transformation of data in order to render
it useless for unintended receivers of the data. Useless, in this context, means the
thwarting of two basic actions; extracting information from the data and injecting false
data or altering the data. This is called the confidentiality- and the integrity-problem
respectively. Additionally, one could imagine the case where a sender encrypts and
sends a message only to later deny having sent it. Not being able to plausibly deny
having sent specific data is another cryptographic goal, called non-repudiation. At its
core, cryptography is the theory, but also to a large extent the practice, of preventing
and detecting cheating or disallowed access to and usage of data. Where nothing else
is stated, this section will be based on the book Handbook of Applied Cryptography
by A. Menezes, P. van Oorschot and S. Vanstone. (Alfred J. Menezes, 1996)

Data encryption can be classified into three branches; unkeyed, symmetric-key
and asymmetric-key, as shown in figure 1. Unkeyed primitives are functions that do
not use a key to encrypt a message, e.g. arbitrary length hashing and permutations.
Symmetric-key primitives use the same key for encryption and decryption whereas

asymmetric-key cryptography uses the system of a public key and a private key (not

2 Technical Background

equal to each other) which are both required for encryption and decryption.

Data Encryption

¥
Unkeyed Encryption Symmetric Asymmetric
' Encryption Encryption

Figure 2.1: Division of types of cryptographic tools. Reproduction of Figure 1.1 in
(Alfred J. Menezes, 1996)

2.1.1 Basic terminology

Denote the set M as the message space, consisting of strings of symbols from the
alphabet of definition. The alphabet could be the binary, {0,1}, the English, or the
hexadecimal, {0,1,...,9,A,B,... F}. An element, m € M is called a plaintext message,
since it supposedly is written in plain text, visible to everyone. Additionally, denote
the cipher text space as the set C, consisting of elements of an alphabet of definition
potentially different to the one used in M. An encryption function is a bijection
between M and C, uniquely determined by an element in the key space {e € K}.
The bijection is denoted E,.. Similarly, a decryption scheme can be defined as the
bijection between Cand M, determined by the decryption key d € K, the decryption
function is denoted D;. To fully define the encryption/decryption operations, we
need the encryption set {E, : e € K} and the decryption set {D; : d € K} such that:
Veec K3d e K, where d is unique and Dy = E; 1 This allows for the decryption of
a message to be written as: D;(E.(m)) = m ¥ m € M. Note that the key-pair {e,d}
can consist of the same two keys or not. It is assumed that M,C, K, {E, : e € K} is
public knowledge and the only thing which is kept secret between the communicating

parties is the key-pair {e, d}.

2 Technical Background

2.1.2 Hash functions, private- and public-key cryptography

The unkeyed primitive of most interest to the understanding of blockchains and
privacy in the context of this thesis, is hashing. A hash function is a one-way function
mapping an arbitrary length binary string into a fixed-length binary string. It is
called a one-way function because it takes little computational resources to calculate
it, but a very large effort, preferably an impossible amount, to retrieve the inverse
of the function. An important characteristic to the hash function is its output length
(normally n = 256 or 512). It is important because the longer the hash, the more
possibilities there are for outputs. And a critical characteristic of a hash function
is that there are no or few collisions, when both x and y produce the same output
h(x) = h(y). Finally, the hash function must be deterministic, that is, the same input
produces the same output every time. The hash function which is considered the
safest, i.e. most difficult to reverse or to in any way alter the contents of, is currently
SHA-3. It fulfils all the criteria of an ideal hash function, and furthermore it is not
susceptible to length-extension attacks. It was demonstrated in late February 2017
that collisions for SHA-3s predecessor SHA-1 were found, where a PDF could be

altered to be hashed into a specific value. It took approximately 263!

computations,
6,500 years of CPU computation time and 110 years GPU computation time. The
attack proof was done using a so-called identical-prefix collision attack, which reduced
the computation time about 100,000 times compared to a brute-force attack.(Stevens,
Bursztein, Karpman, Albertini, & Markov, 2017) Hashes are used in most password
verification systems. There a hash of the password-input is compared to a hash stored
in a database, instead of storing the passwords in plaintext. Hash functions are also a
necessary basis for understanding proof-of-work, which will be explained in section

/refconsensus .

To understand symmetric-key cryptography we will start by considering two
parties, Alice and Bob, who wish to exchange messages over an insecure channel
(public chat, megaphone etc.). It is not enough for them to hash their messages
and send them, since it is computationally close to impossible to find m given h(m).
So first they agree upon an encryption scheme, i.e. a message space M, key space
IC, a set of encryption and decryption functions and ciphertext space C. In the

case of symmetric, or private-key cryptography, they agree upon a common key

2 Technical Background

e such that D,(&,(m)) = m. Then Alice encrypts her plaintext message m into
¢ = &(m) upon which she sends it to Bob. Bob then decrypts it, D,(c) = m. The
tirst apparent issue here is the initial agreement of the (shared) private key. Since it
is commonly assumed that the encryption scheme is public knowledge, or at least
can be found out, considering there is a finite amount of possibilities of encryption
transformations available. This requires Alice and Bob to communicate over a secure
channel (meeting in person for example), which is often unfeasible. This problem
is called the key distribution problem and its solution in 1976 is considered to have

altered the direction of modern cryptography.

The basis of asymmetric-key cryptography is the solution of the key distribution
problem. At first, the idea of sharing a key through an insecure channel was proposed
by Ralph C. Merkle (Merkle, 1978). However, the key-sharing algorithm is named
after Whitfield Diffie and Martin E. Hellman and their introductory paper. (Whitfield
Diffie, 1976) The idea of the so-called Diffie-Hellman exchange, or D-H ex-change, is
according to the following protocol where two participants, Alice and Bob wish to
share a secret:

1. Alice and Bob agree upon an encryption transformation and

2. Alice and Bob each generate two keys: pky4,sk4 and pkg, skp such that:
Dy (Epr(x)) = x

3. Both pk, and pkp are made public while sk4 and skp are secret.

4. Alice encrypts m using Bobs public key and an agreed upon encryption algo-

rithm.

c = EPkB (m)
5. Alice then sends c to Bob over any channel.
6. Bob decrypts Dy, (c) = m using his private key.

An actual implementation came the year after, in 1978, by Rivest, Shamir and Adleman

(Rivest, Shamir, & Adleman, 1978), proposing the famous RSA-algorithm.

2 Technical Background

2.1.3 Digital signatures

To achieve authentication and non-repudiation using cryptography, digital signatures
are used. In other words, to assure that a specific person/device has sent a specific
message, it needs to be digitally signed, just like letters would be emprinted with a
special seal and signed by hand of the sender in former times. A digital signature
is a method for digitally signing data with, perhaps even more, certainty of identity
than a handwritten letter. Formally, this authenticates the message sent, ensures that

the sender cannot deny having sent it and also ensures senders identity.

There are essentially two types of digital signature algorithms, those that require
the original message as input for the verification algorithm, and those that do not.
In the latter case, the original message is recovered from the signature itself. Digital
signature schemes with appendix rely on hashing algorithms and are more widely used
than the alternative message recovery-type since they are less prone to existential
forgery attacks.! Digital signatures with message recovery does not require a priori
knowledge of the original message, for verification. It is especially suited for sending

short messages since the message can be recovered from the signature itself.

Essential for understanding blockchain technology is the concept of Merkle trees,
named after Ralph C. Merkle who owns the patent for it since 1979. (Described in
Merkle, 1988) It is a data structure defined as: every non-leaf node carries the hash
of the values of its child nodes, and a leaf node does not have any child nodes. To
verify that a leaf node is a child of a given node, is a logarithmic-time computational
problem, compared to a list, whose size is proportional to the number of nodes in the
tree.

2.2 Blockchain Technology

There exists, to the knowledge of the author no single, formal definition of blockchain
technology which is generally accepted. Many use Bitcoin as a starting point, explain-

ing blockchain technology by its first application, cryptocurrency. However, there are

1 An existential forgery attacks is when a message/signature-pair is created although the creator isn’t
the legitimate signer

10

2 Technical Background

systems that aren’t captured very well by that definition, and that still are generally
classified as blockchains. As for alternative definitions there is the one by Vitalik
Buterin, the founder of Ethereum: a blockchain is a magic computer that anyone can upload
programs to and leave the programs to self-execute, where the current and all previous states of
every program are always publicly visible, and which carries a very strong cryptoeconomically
secured guarantee that programs running on the chain will continue to execute in exactly
the way that the blockchain protocol specifies.(Buterin, 2015) The definition of blockchain
made by Buterin is not very rigorous or technical, and is certainly not identical to
Bitcoin, but manages to include many characteristics of blockchain systems. An
attempt to classify different blockchain technologies was made by (Okada, Yamasaki,
& Bracamonte, 2017), but it fails to provide a satisfactory definition. A technical
committee has been formed within ISO to define areas for standardisation. (“ISO/TC
307, Blockchain and electronic distributed ledger technologies,” 2016) They have
yet to publish a formal definition but do describe blockchain as: a shared, immutable
ledger that can record transactions across different industries, [...] It is a digital platform
that records and verifies transactions in a transparent and secure way, removing the need
for middlemen and increasing trust through its highly transparent nature. IBM proposes a
similar definition saying that a blockchain is a shared, immutable ledger for recording the
history of transactions. (“How does blockchain work?” 2016) The following definitions
are from the sources just mentioned or from (“Ethereum Homestead Documentation
- What is Ethereum,” 2016). A blockchain is a distributed computing architecture
where a computer is called a node if they are participating in the blockchain network.
Every node has full knowledge of all the transactions that have occurred, information
is shared. Transactions are grouped into blocks that are successively added to the
distributed database. Only one block at a time can be added, and for a new block
to be added it has to contain a mathematical proof that verifies that it follows in
sequence from the previous block. The blocks are thus connected to each other in a

chronological order.

The above definition is a very wide one, encompassing almost all existing imple-
mentations of blockchains. Therefore a more detailed explanation for the readers
understanding will be given below. First Bitcoin will be explained in section 2.2.1,
and then the blockchain technologies that were created after that, in section 2.2.2).

11

2 Technical Background

2.2.1 Bitcoin - the first blockchain

Blockchain technology stems from the seminal white paper, (Nakamoto, 2008), out-
lining how the cryptocurrency Bitcoin could be constructed. Bitcoin solved a very
important problem in the field of electronic money called double-spending, i.e. using
the same electronic coin to pay for multiple things. Normally this is solved through
a central authority, such as a bank or another trusted third party but Nakamoto
proposed a time-stamp server, which ensures all transactions are appearing chrono-
logically in the database. The author(s)? proposes a use of a Proof-of-Work (PoW,
see section 2.2.5) algorithm for establishing consensus on which chain is the correct
one. It establishes an incentive for users to be correct in the validation of transactions.
Essentially, it makes it more expensive to fake a transaction than the potential gain.
Without an appropriate algorithm for establishing consensus on the blockchain, there
could be no trust in the blockchain-system of Bitcoin since anyone with access to
the history of transactions (all nodes), could re-write history and publish it as the
true one. In Bitcoin, users don’t have accounts or account balances, but instead signs
transactions using their private key. Each bitcoin is linked to a public key through an
unspent transaction output (UTXO) and the user who possesses the corresponding
private key is the owner and can control the usage of it. The UTXO is there because,
in Bitcoin, coins sent to an address all have to be spent, even if the user actually
doesn’t want to spend the entire amount. It is however, possible to split a transaction.
Assume that a certain address contains 3 XBT (abbreviation for the Bitcoin currency),
and the owner of the private key to that address, i.e. the owner of the bitcoins, wants
to pay 1 XBT to another address. The new 1 XBT transaction will use the entire 3 XBT
as input and the 3 XBT are thereby spent. So, the change in this transaction, the 2 XBT,
will be sent back to the same user but as a new input using a new address. A user
who has taken part in payments, whether as payer or payee, will have a collection
of addresses, all summing up to the total balance of her wallet. Because the first
blockchain to be used was Bitcoin, there was at first no distinction between Bitcoin
and blockchain. All initial applications for blockchain were within cryptocurrencies

or financial processes. Many blockchain-based use cases are still within the financial

21t is to this date still unknown who is the person or persons behind the pseudonym Satoshi
Nakamoto, even though multiple claims have been made by researchers, cryptocurrency protago-

nists and others.

12

2 Technical Background

sector, but the benefits of disintermediation of trust have proven to be useful in
other areas as well. This was brought forth by the advent of Ethereum, a Bitcoin-like

cryptocurrency but with added functionality for smart contracts.

2.2.2 Post-Bitcoin blockchains

Some properties of Bitcoin have been abstracted and rebuilt into what is now called
blockchain technology or distributed ledger technology. While still maintaining the
main properties of Bitcoin, new blockchains are often more flexible in their applica-
tions and what actions they allow. It is a technology very much under development
where new approaches and applications are being published frequently, most often
through white papers published by start-ups or a group of corporate researchers. Still
the basics of blockchain remain the same, it is a distributed, time-stamped database
with consensus-establishing peers. Blockchain technology is characterised by the

following traits:

* Distributed: Nodes are considered equal in the sense that they all have a full
copy of the entire history of the database. There can also be less equal nodes,
also called lightweight nodes, which only have a couple of the last blocks stored
locally. Generally, communication between nodes is done over the Internet with

private-key cryptography.

¢ Time-stamped: Since every block of transactions is hashed into all the subse-
quent blocks, it becomes increasingly difficult to change history the further
away in time the current block is. The blockchain at hand becomes a provably

correct auditing tool.

* Consensus: Nodes establish one truth about which version of the database is the
correct one through a consensus-algorithm. This serves to validate transactions
as well as to discourage for example double-spending attacks. The type of
consensus-algorithm being used is highly dependent on the structure and
purpose of the blockchain. See section 2.2.5.

13

2 Technical Background

2.2.3 Permissions and specialisation

As the development of blockchain technology progressed past Bitcoin, two different
options developed as to who should be allowed to participate in the validation and
observing of the network. The dichotomy is essentially between permissioned and
permissionless blockchains, although there is in some cases some flexibility for hybrid
solutions to be implemented. A blockchain which exists openly on the internet is
called permissionless, classic examples of such are Bitcoin and Ethereum. This type
of structure is what was defined in the Section 2.2. However, the more actions that
are allowed, the more possibilities to hack the blockchain there are. This was seen
during the infamous DAO-hack where approximately USD50 million were siphoned
from an ether fund. (Buterin, 2016). Also, since the data on the blockchain is open to
anyone who wishes to join the network, data has to be kept completely anonymised
(as not completely successfully attempted by Bitcoin,Vasek and Moore, 2015) if it’s
necessary to keep it private. Since, in some cases, it is not possible to anonymise
all the data or it is simply not desirable that everyone can participate in a network,
permissioned blockchains developed.

The principle of permissioned blockchains is that there is a regulation of who is
allowed to join and participate in the network. This can be done by a consortium
of companies, governmental agencies or other organisations, either by inviting new
members one be one, or by predefining a set of criteria. The benefits, besides the
increase in privacy, include the potential for more flexibility in adapting the network,
better scalability and faster transactions. Sometimes, depending on the consensus
algorithm at play, permissioned blockchains can be more susceptible to unintended
changes of its history. In other words, the speed, privacy and scalability are sometimes
being traded for immutability and censorship-resistance. (Mattila, 2016). This is
because a permissioned blockchain doesn’t necessarily require a PoW-consensus
algorithm, but can use one with less resource expenditure, thus making the process

of concurrency easier.

Blockchains can also be created more or less flexible, or specific, in what actions
are permitted on them. For example, Bitcoin and most coins, is an example of

highly specialised chains with one purpose - to safely transmit the tokens of the

14

2 Technical Background

Table 2.1: Generalised vs. Specialised blockchains and Permissioned vs. Permission-

less. Original source: “Monax - Blockchain explainer,” 2016

Permissionless Permissioned

General purpose Ethereum Monax’s eris-db

Specialised Bitcoin Multichain

cryptocurrency. On the other hand, there is Ethereum, with a virtual machine built
in, as well as the possibility to deploy smart contracts in a turing-complete manner.
Ethereum was explicitly created to allow for the creation of decentralised applications
(DApps), and has at the time of writing this thesis, about 360 applications listed
on http://dapps.ethercasts.com/. Ethereum is, however, permissionless and isn’t
the right platform for all DApps, necessarily. In table 2.1 the matrix of permission-
less/permissioned and generalised /specialised blockchains is shown with examples
of a blockchain or platform for each category. A generalised blockchain is one which
is not optimised for performing one specific task, in opposition to a specialised one
that is. Both Ethereum and Bitcoin are permissionless, but on the permissioned
spectrum, there is the multi-purpose eris-db from Monax and the specialised Mul-
tichain platform. eris-db is a blockchain client containing a permissions layer, an
implementation of the EVM and uses by default Tendermint consensus, although
that can be modified. Tendermint is a Proof-of-Validation (PoV) algorithm, where
scarce tokens are deposited and are threatened to be deleted if voting is dishonest
(see Section 2.2.5). Eris-db is different from MultiChain in that, MultiChain is a fork
from the Bitcoin Core source code and is in many ways optimised to work with
the Bitcoin network. Multichain is specialised because it is optimised to perform
transactions, wheras Monax is built to supply a great number of services. It does not,
however, mean that it is not possible to build customised services on Multichain, or
high-performance payment systems on Monax, just that it is made easier by design.
It doesn’t use PoW, but has a type of algorithm where the maximum amount of votes

that a miner can cast during a specific timeframe is limited. (“Ethereum Homestead

15

http://dapps.ethercasts.com/

2 Technical Background

Documentation - What is Ethereum,” 2016)

2.2.4 Smart Contracts and Ethereum

The name smart contracts is arguably a misnomer since they are in fact neither smart
nor contracts in the common sense. Smart contracts are, in the context of blockchain,
simply logic that is published on a blockchain, can receive or perform transactions like
any address (transactions may be rejected or require special arguments to function)
and that can act as an immutable agreement. The purpose of the smart contracts
is to act as a "computerised transaction protocol that executes terms of a contract"
(Szabo, 1994) and was first coined by cryptographer Nick Szabo. The basic idea,
and the source of the contract-part in the name, is that certain parts of contracts can
be included in software in such a way that the breach of them is either expensive
or impossible. Smart contracts are often confused with Ricardian contracts (Griggs,
2015), which is the digital recording and connection to other systems of a contract at
law. This is not what is meant by smart contracts, since they do not need to be legal
in any way, nor connected to outside systems. One could however, imagine value in
the connection of smart contracts with Ricardian ones to "outsource" functionality of

legal contracts to smart contracts.

According to Szabo, contracts need to have a couple of characteristics to be defined
as truly smart contracts. These characteristics are: visibility, online enforceability,
verifiability and privity. Visibility (Szabo uses the term observability) means that
participants in the contract should be able to see each other’s performance of the
terms of the contract, or to be able to prove the fulfilment of their own terms to other
participants. It is also referring to the visibility of actions taken by the logic in the
contract; a Point-Of-Sale screen showing the amount to be paid to the customer but
omitting the fact that data is being saved from the credit card is an example of such
a hidden action. Online enforce-ability refers to making certain that the terms of
a contract are being fulfilled. The measures that can be taken in order to achieve
this can be categorised into proactive and reactive ones. Proactive measures seek to
make it technically impossible to breach terms or to allow either party to drop out
of the contract should there be a valid breach on another part. Reactive measures

deter malicious behaviour through reputation or enforcement, but also by recovering

16

2 Technical Background

potential assets after breach of contract. Smart contracts also need to be verifiable, or
auditable, should there be a conflict. Lastly, smart contracts should be as private as
possible, meaning that knowledge and control of data involved in a smart contract

should only be available to participants if necessary.

One might notice that the objectives of smart contracts just mentioned; visibility,
online enforceability, verifiability and privity, results in two separate directions. Priv-
ity is exerting a controlling force over the contracts, wanting to minimise openness to
outside parties. Diametrically opposed, there are the other three objectives, visibility,
enforceability and verifiability, who require access to contractual data to be handed
out to participants or auditors. Therefore an optimum must be found where as little
information and control as possible is given to external parties, yet the possibility to
verity, observe and enforce is still available. In 1997, before blockchain technology
and advances in zero-knowledge proofs as well as secure multi-party computations,
Szabo’s solution to the optimisation problem was to trust an intermediary, a third
party, such as an auditor. (Kosba et al., 2015), (Szabo, 1997), (Zyskind et al., 2015)

The Ethereum platform is a general blockchain, with a virtual machine (Ethereum
Virtual Machine, EVM) to run smart contracts. Since the environment exists only on
the blockchain in the form of a virtual machine, the smart contracts are completely iso-
lated from network, file-system or other processes on the node machines. A high-level,
Turing-complete language was created to write smart contracts with on Ethereum.
However, that language, Solidity, has now become standard also for other platforms
with smart contract capabilities. Solidity is similar to JavaScript in syntax, but is
written in a completely different style. After a contract has been written in Solidity, it
is compiled into EVM bytecode and then deployed at a specific Ethereum address. To
deploy and interact with smart contracts on Ethereum however, a special JavaScript
RPC-library is used alongside a web API.?> Because smart contracts programming
started with Ethereum and Solidity, it is still a discipline under development. The
Solidity language has a number of known peculiarities and a list of changes to come,

meaning that code being written now may not be fully functional with the next

3See http:/ /www.ethdocs.org/en/latest/contracts-and-transactions/accessing-contracts-and-
transactions.html

17

2 Technical Background

update. There are a couple of programming best practices that are specific to smart
contracts development, gathered in the (relatively) short time that Solidity has been
in use. There are two main reasons behind the extra considerations of security that
should be taken into account for smart contracts development; Solidity contracts are
likely to process the ownership of valuable tokens, items or rights to something; the
execution of smart contracts occurs on a blockchain, meaning that all participants
can observe it and the source code for it. Common security guidelines that have been

gathered during the (relatively) short time that Solidity has been used are:

Damage control If possible, the amount of tokens stored in a smart contract should
be limited since, if the source code, the platform or the compiler

should contain a bug the tokens may be stuck in the contract.

Modularity Smart contracts should be kept as tiny and simple as possible.
Local variables and length of functions should be limited to keep
the contracts as readable as possible. The more modular the

contracts are, the easier it is to improve a system of smart contracts.

Checks-Effects Functions should perform precondition checks at the first step of
the algorithm. Then, as a second step, changes to state-variable
should be made. Finally interactions with other contracts should

occur.

2.2.5 Consensus algorithms

Consensus algorithms are of the highest relevance to blockchain technology since the
purpose of Bitcoin was to transfer value in an unregulated, distrusting environment,
where a sure way of validating transactions was needed. The goal of the consensus
algorithm is to ensure a single history of transactions exists and that that history does
not contain invalid or contradictory transactions. For example, that no account is
attempting to spend more than the account contains, or to spend the same token twice,
so-called double-spending. In Table 2.2, different important consensus algorithms are
compared to each other. Below, a brief introduction to a few of them is given, but for
more details, the reader is referred to (Back, 1997), (Nakamoto, 2008), (Fischer, 1983),
(Tendermint, 2017).

18

2 Technical Background

Bitcoin solved the consensus problem by, for each new block announcing a target,
which the hash of the previous block, the current block and a variable nonce has
to equal less than. Since the output of the hashing function is evenly distributed,
it’'s impossible to create a block such that it with certainty will be easy to reach the
target. Therefore, there is a race between the mining computers in the network to
find the right nonce. Once a target is reached, the mining computer broadcasts that
block to the network and other participants validate the transactions. If enough
validating nodes find the transactions to add up, they agree upon that block being
added to the chain. This procedure is called proof-of-work (PoW). Since the goal is,
not to give too much power to a single person or organisation?, a limited resource
has to be chosen which will be spent upon voting for the validity of a block. In
PoW, that resource is computing power.(Cynthia Dwork, 1992). Since computing
power is getting cheaper and more available with Moore’s Law and cloud computing,
the difficulty of the hashing problem is regulated according to the frequency with
which the previous problems were solved. A common critique of PoW is however,
that the "waste" of computing power also means a large waste of energy. There are
miners who only mine in winter, and use the exhaust heat from the mining farm
to warm up their house. (“Hotmine Inc.” 2016). What this essentially means is
that miners are forced to pool resources into what can ultimately be a handful of
giant Bitcoin farms, thus having centralised the decentralised network. Additionally,
Bitcoin does not have a very high throughput of transactions since the block time
stays constant at about 10 minutes and block size as well (about 1 MB). The energy
waste and throughput are two reasons why alternatives have emerged. The most
relevant for this thesis are Proof-of-Stake (PoS) and Tendermint which are very similar.
Neither uses computing power as a scarce resource, but rather the ownership of
the inherent tokens of the blockchain. The principle is that owners of tokens put
a certain amount of tokens at "stake" by betting on the version of the blockchain
that they believe is the correct one. This will increasingly incentivise validators to
behave according to the rules depending on how much they possess. Validators in
the Tendermint consensus algorithm are nodes who take turns proposing blocks
of transactions and then vote on them. If a block fails to get enough votes, the

%A Sybil-attack is when an attacker gains control of the network tokens and can redirect them to a
specific account

19

2 Technical Background

protocol moves to the next validator to propose a block. To successfully commit
a block, there are two stages that need to be passed: pre-commit and pre-vote. A
block is committed when more than 2/3 of validators pre-commit for the same block
on the same round. As long as no more than 1/3 of validators are byzantine, it is
impossible for conflicting blocks to be committed at the same height of the blockchain.
Tendermint can be modified to act as a Proof-of-Stake algorithm by assigning different
"weights" to the votes of different validators. In PoS, there is an attack, or a problem,
called the nothing-at-stake-attack. The core of it is that there is no reason why a
validator couldn’t bet on all different proposed versions, thus being certain to win.
The Ethereum wiki-page explains it as: an attacker may be able to send a transaction
in exchange for some digital good (usually another cryptocurrency), receive the good, then
start a fork of the blockchain from one block behind the transaction and send the money to
themselves instead, and even with 1% of the total stake the attacker’s fork would win because
everyone else is mining on both. (“Ethereum GitHub Wiki - Proof of Stake FAQ,” 2017)

20

2 Technical Background

Consensus | Resource being | Benefits Drawbacks Examples
algorithm | used
Proof-of- | Computing Trustless, im-| Energy consump- | Bitcoin, Lite-
Work power mutable, highly | tion, transaction | coin.
decentralised throughput.
Proof- Ownership of | Efficient in | Nothing-at-Stake | NXT
of-Stake fixed amount of | energy and | problem. le. vot-
(PoS) tokens throughput, ing for different
scalable forks at the same
time
Delegated | Ownership of | Allegedly more | Voter apathy in | BitShares
PoS scarce tokens + | efficient than | elections can lead
peer reputation | PoS to excessive cen-
(elections for tralisation and re-
delegates) duced robustness
Tendermint| Security deposit | Gives the bene- | Nothing-at-stake | Eris-Db
(Proof-of- | of scarce tokens | fits of proof-of- | problem still per-| (“Monax -
Validation) | subject to burn | stake without al- | sists over long | Blockchain
(Tender- if voting dishon- | most any of its | periods of time explainer,”
mint, estly draw-backs 2016)
2017)
Proof-of- | Selected author- | Efficient, The corruption | Parity PoA
Authority | ities are ran-| doesn’t re- | of authorities is a
(PoA) domly selected | quire any | large possibility, re-
to validate | inherent tokens | lies on authorities
transactions or economic | being well-selected
value and controlling
eachother

Table 2.2: Consensus algorithms for usage in blockchains. Adapted from source:
(Mattila, 2016) with addition of Proof-of-Authority

21

Chapter 3
Implementation

In this chapter, a design for a PoC electronic medication plan (EMP) using smart
contracts and blockchain technology is proposed. First, the three different user
archetypes are described along with user stories in order to provide functional
specifications for the PoC. Further descriptions of the PoC such as quality attributes
and how to set the system of smart contracts up with a blockchain are also given.
Thereafter a schematic of the prototypical interactions on the blockchain is shown
along with the interactions between the smart contracts. The suggested solution to
the described problem uses the decentralised, trust-less and immutable properties of
blockchain technology as well as permissioning in the smart contracts. To be noted is,
however, that no security or privacy liabilities outside of the blockchain have been
resolved with this implementation. Some of the larger off-chain issues are mentioned

in the discussion.

3.1 User stories and requirements

The implementation outlined in this thesis is limited to three archetypical users:
patients, doctors and pharmacies. In order to describe the various functional require-
ments that users have on the application, user stories were written and are shown in
Table 3.1 below. The different user types are thereafter defined more in detail. An
effort was made to simplify the user stories and requirements to the bare minimum,

while still keeping the PoC at a viable level of usability and security.

22

3 Implementation

Asa... I want/need to ... Traceability

Patient Be able to see what prescriptions I have so that I know 1.1

what medicine to take.

Identify myself in a cryptographically secure man- 12
ner upon accessing my personal information on the
blockchain.

Be able to share information on my medication plan 1.3

with Doctors and Pharmacies on the blockchain.

Doctor Be able to see and alter the prescriptions of my patients 2.1

so that I can correctly treat them and avoid medication

errors.
Verify the patient-account identity before prescribing 22
any medications or in any way altering the medication

plan.

Be able to see what prescriptions a Patient has gotten 2.3

from other Doctors, so that I can control the safety of

my patients.

Identify myself in a cryptographically secure manner 24
upon accessing Patient information on the blockchain,

so that no unauthorised entities can access it.

Pharmacy | Be able to verify a patient’s prescription so that I know 3.1
that she/he isn’t trying to purchase unintended phar-
maceuticals.

Identify myself in a cryptographically secure manner 3.2

upon accessing Patient information on the blockchain,

so that no unauthorised entities can access it.

Table 3.1: User stories defining functional requirements and guiding development of
EMP PoC.

23

3 Implementation

Doctor Patient

+ Secure login
- Prescribe medications

+ Secure login
- Ldit personal information
+ Prove prescriptions

+ Give permissions

+ See prescriptions of a
patient

System of Smart
Contracts

Blockchain

+ Secure login

+ Verify identity and validity of
prescriptions

+ Sell medications

Pharmacy

Figure 3.1: Overview of different users and their interactions with the blockchain and

system of smart contracts which exist on the blockchain.

Patients are assumed to be private persons, seeking medical care at one of many
healthcare providers, in this thesis simply called Doctors. Doctors are assumed
to be certified, medical professionals, in possession of a state-issued license and
authorisation to practice medicine. Pharmacies are defined as only those commercial
or state-owned outlets possessing the legal right to sell prescription medications to
patients. The requirements are described in a less formal way in Figure 3.1, where
the different users are shown interacting with the blockchain, on which the smart
contracts reside. In bullets next to them are the actions they need to be able to
perform.

There are some requirements that apply to the general system and not just to one
user specifically. Some of them are described in part by the user stories, but for the
sake of exhaustiveness and application to users not in the system, they are explicitly

written below.

24

3 Implementation

R1. It must be impossible, for a non-admin account, to connect prescriptions to the
identity of a patient, doctor or pharmacy without the consent of the user in

question.
R2. Only those permitted to should be allowed to connect to the network.

R3. There must be an immutable traceability built into the system, where it is possible

to see:
1. Who prescribed a certain medication
2. If a medication was sold after it having been prescribed
3. Where it was sold

Immutable traceability means that there must be a history of changes made to
prescriptions and that it must be made very difficult, if not impossible, to alter

it post ex.

R4. Smart contracts must be exchangeable without needing to re-move the entire

system or change addresses to contracts with which humans interact.

The design of the final PoC was based on the requirements and user stories mentioned

above.

3.2 Design of the PoC

In this section, the design, based on the user stories and requirements from the
previous section, is described. First of all, the core of the PoC-logic, the smart
contracts, is explained. Thereafter, a proposal for deployment on a blockchain is
given, along side a clarification of the functionality which that would provide. Names

of contracts and functions are written in this font from here on to facilitate reading.

3.2.1 Design overview

In Figure 3.2, a high-level overview is given of the EMP as designed in this thesis.
It goes from more abstraction at the top ("Software system level"), to lower level of
abstraction in the bottom ("Contract level"). For the sake of relevance to the code

written for the PoC, only the "Smart contracts"-component is explained in detail

25

3 Implementation

in Figure 3.4. The process of starting the application is shown in Figure 3.3 as a
UML-like activity diagram. It describes the initial set-up and deployment of the

contracts by an admin.

Software
system level

Electronic Medication Plan

Container
level

Consensus Permissioning Frontend

Component
level

Smart contracts

Contract
level

Figure 3.2: High-level system overview of the EMP PoC. The figure is not exhaustive
and is simplified for sake of relevancy. Visualisation technique based on
(Brown, 2016)

3.2.2 System of smart contracts

The proposed architecture of the system of smart contracts is based on the design
principle of having different types of contracts to perform different classes of tasks.
To classify the contracts, a model called "The Five Types Model" is used (“Monax -
Solidity explainer: The Five-types model,” 2016), although not all of the five models

are actually used in the PoC. The model divides contracts into:

26

3 Implementation

1. Database contracts Contracts for storage of data with basic read-, write-
and get-functions are called database contracts. They

can also include permissions-checking.

2. Controller contracts One step up in the layer of abstraction are contracts
for controlling database contracts. For example to
perform batch reads/write operations. They can

also act on multiple database contracts.

3. Contract managing contracts These contracts are needed to control and manage
the actions and existence of other contracts. They
should also handle the communication between con-

tracts.

4. Application logic contracts Any contract that is implementing application-specific
tasks through controllers is an application logic con-

tract.

5. Utility contracts Some small, generic functions can be outsourced
into utility contracts that are highly specialised. For
example, a utility contract could hash data or per-

form another operation.
The contracts in the PoC are the following:

PatientInfoDb - A database contract to store information about patients. The infor-
mation stored for each patient is prescription and the prescribing
doctor for each respective prescription. A Patient-struct is created
for each patient to contain the corresponding data as well as a next-
and a prev-attribute so that a doubly-linked list can be used to iterate

over them.

PermissionsDb - A database contract to store permissions. The different permissions

that can be modified are:

perms 0 - Patient permissions, e.g. only allowed to read info related

to one’s own address

27

3 Implementation

1 - Pharmacy permissions, e.g. allowed to read info about
patient who permitted it

2 - Doctor permissions, allowed to add patients, add prescrip-

tions and read info about patients

patientDoctorConsent When a patient wishes to grant a specific doctor or phar-

macy the right to prescribe, sell medication or add patient as

customer a consentCode can be added.

prescripPatientConsent When a doctor attempts to prescribe a specific medi-

Permissions

Cmc

CmcEnabled

Patient

Doctor

Pharmacy

InfoManager

cation, the existence of the patient-prescription tuple is checked

against this variable.

- Controller contract acting like interface with the PermissionsDb-

contract.

- The contract-managing-contract is simply named Cmc and contains
a collection of the different contracts. All other contracts must be

connected to the Cmc or inherit from the class CmcEnabled.
- Base class for contracts that are used in a cmc system.

- Application logic contract for handling requests from patients
such as retrieving prescriptions, changing consent-level for a certain

prescription-doctor tuple etc.

- Application logic contract for handling requests from doctors. These
include adding a new patient, prescription or confirming that a

certain medication has been prescribed.

- Application logic contract for handling requests from pharmacies.
This is ultimately only to confirm a prescription and will be called

when a pharmacist wishes to sell a prescription to a patient.

- Application logic contract with which users interact. It also checks
all permissions and provides one point of contact for a user. See

Figure 3.4.

28

3 Implementation

InfoManagerEnabled - Base class for contracts that only allow the InfoManager to call
them. Note that it inherits from CmcEnabled.

ContractProvider - Interface for getting contracts from Cmc.

To implement the application in a real-life scenario, one would need to (even before
the steps in Figure 3.3) set up a blockchain such as the one provided by Monax.
The setting up consists of each individual node generating a private/public key-pair.
The developer then starts her original node, creating a so-called genesis-file which
contains necessary information for the blockchain configuration. The developer can
the register which private keys should be validators and they can connect to the
blockchain. Then the steps from Figure 3.3 continue. The validators are configured,
the blockchain is started and transactions can begin. Then the developer deploys the
contract managing contract and then all the other contracts. She then registers them
with the contract managing contract and sets permissions for the patients, doctors

and pharmacies.

3.2.3 Data and variables on the blockchain

Given requirement R1., plaintext data with which a user can be identified cannot be
stored on the blockchain. This would allow any participant on the blockchain to see
all medications of a specific person. However, if the specificity is reduced, and the
person is no longer identifiable, the value in the information address 0x3a5f29... has
been prescribed medication A, B, C, is very low. Thus, plaintext prescriptions are

assumed to be stored in the smart contracts.

3.2.4 Supporting infrastructure and governance

The PoC is not complete with just the smart contracts. There is also a blockchain
needed, as well as a structure for handling keys. Additionally, there needs to be a
type of either distributed or centralised consensus established, on who is allowed to

join the network as a doctor or a pharmacy.

The suggestion for this PoC, is that a PoS-, Tendermint or PoA-consensus algorithm
is used on a permissioned blockchain. The details of the algorithms are explained in

29

3 Implementation

Configure validators

Start Blockchain

Deploy Cmc as owner

Deploy all other contracts

Register contracts with Cmc

Set permissions for new
accounts

Figure 3.3: Diagram of how the starting-up activity for the system works.

Section 2.2.5. It is wasteful and inefficient to use a Proof-of-Work consensus algorithm
in a permissioned blockchain. Therefore a PoW is not recommended in this PoC. It
would however make sense should the infrastructure cost (validating nodes would
require constantly running computers running special software) prove to be too high.
In such a case, a similar system could be deployed to the Ethereum public blockchain.
A weakness in the security in that case would be that a layer of security has been lost,
no proof is available that a doctor is a doctor, and since more people can access the
contracts, vulnerabilities are more likely to be exploited.

A Proof-of-Stake algorithm is a more efficient alternative should there be some type

30

3 Implementation

Component

level
Tl Contract
~ of addresses Manaoi
Intcﬁ*[anager and Managing
registered Contract
contracts
Gets
address
Contract Interactmnsl
level Interacts

with
contract

!

Interactions

PatientInfoDb

Figure 3.4: Overview of the system of smart contracts for the EMP PoC. Not all smart
contracts are included for sake of clarity and relevance. Visualisation
technique based on (Brown, 2016).

3 Implementation

of value in the inherent tokens. Otherwise no one would voluntarily validate blocks.
One can however imagine that some premium from health care insurance companies
is payed out based on how much validation a doctor or pharmacy has provided. The
premium or payment could also come from a governmental operator. The same logic
can be applied to Delegated PoS. A Proof-of-Authority consensus model is feasible,
should it be possible to find trustworthy authorities to validate the transactions.
If doctors and pharmacies are liable to alter the transaction history, then one or
more governing bodies would need to be appointed. These could be as small as
independent data-centers locked away in a server room underground with additional
security measures like multiple keys required to enter. Or they could be insurance
companies operating under EU law, being audited by third parties. This, however,
avoids the purpose of the project a bit, to not have a single point of failure or a single
trusted authority. Although it does not strictly have a single trusted third party, it
does have multiple parties that could collude with each other.

No additional validation besides the permissioning layer on the blockchain and the
control mechanisms of the smart contracts is needed, strictly speaking. Although
it is advisable that a structure, such as a Decentralised Autonomous Organisation,
or another type or organisational structure is set up to validate prescriptions and
on-board users. Also, audits of doctors or pharmacies should be formalised and
required. In the event of an audit it must be possible to analyse specific prescriptions
and actions on the blockchain. The blockchain would consist of, for the largest part,
non-validating nodes, patients, and otherwise doctors and pharmacies who could be
required to have full nodes. The best fitting, available platform for this is the Eris-db
by Monax, who supply a fairly well-developed, though not bug-free, open source
blockchain ecosystem. The core is also using the EVM, which means Solidity, and
the smart contracts developed for this PoC, can be used without alterations. Eris-Db
provides the permissioning layer and integrates with Inter-Planetary-File-System
(IPFS), which could be very useful should larger amounts of data wish to be stored,

such as entire medical health records or other personal information.

To start an Eris-Db blockchain, a docker-container needs to be set up to ensure that
the environment in which the whole package resides is compatible. Once that is set up,
keys for the first users need to created, since they need to be included in the genesis

32

3 Implementation

json-file. Some type of end-to-end encrypted messaging service should be used
when transmitting keys. When designing the genesis file, users can be configured to
have different privileges. For the EMP PoC, a number of cloud instances (through
Amazon Web Services, Digital Ocean or other) could be set up to act as (Tendermint)
validators. This allows patients, doctors and pharmacies to have lightweight client
nodes, meaning that they do not need to consecrate devices to always be running to

ensure the continuation of the blockchain.

To avoid fraud and enforce Know-Your-Customer-regulations, it would be necessary
to have some type of authority to control that users aren’t a) registering multiple
patient accounts to potentially hide prescriptions from doctors and pharmacies, or b)
registering as a doctor without actually being a licensed doctor, or c) registering as a
pharmacy without actually being in possession of a pharmacy. The first issue could
be solved by having a simple, encrypted storage of who has been registered already,
kept by the organisation issuing the accounts. The second and third problem need to
be addressed in cooperation with the responsible state department for the country
at hand. The record does actually not need to be kept private, since knowing which
doctor is registered for an account would not lead to any security issues, as long as
there are enough users. It would (hopefully) though be seen as a positive, knowing
that a doctor or pharmacy is adopting new technology.

33

Chapter 4
Evaluation

In this chapter, the artefact presented in Chapter 3 is evaluated using a descriptive
evaluation method as proposed in (Hevner et al., 2004). Additionally manual, func-
tional testing was carried out on the system using the online compiler provided by the
Ethereum foundation (https:/ /ethereum.github.io/browser-solidity /). Development
of the smart contracts was done in Solidity.

4.1 Description of evaluation criteria

An IT artefact can be evaluated according to the criteria: "functionality, completeness,
consistency, accuracy, performance, reliability, usability, fit with the organisation, and
other relevant quality attributes." (Hevner et al., 2004) However, given the novelty
of blockchain technology, the scope of the thesis and the extension of the PoC, the
artefact cannot be evaluated according to all criteria. (Hevner et al., 2004) says a
descriptive evaluation can be used only in the case where the technology is especially
innovative and other methods may not be feasible. The EMP fits those criteria and

will therefore be evaluated using two methods from the descriptive evaluation theory.

1. Informed Argument Use information from the knowledge base (e.g., relevant
research) to build a convincing argument for the artefact’s

utility.

2. Scenarios Construct detailed scenarios around the artefact to demon-

strate its utility.

34

https://ethereum.github.io/browser-solidity/

4 Evaluation

4.2 Fulfilment of evaluation criteria

The EMP PoC fulfils all the functional criteria shown in Table 3.1. A motivation
for how each of the user stories is satisfied is exposed in Table 4.1. For details on
the code, the reader is directed to the appendix where the full source code can be
found. Besides the functional criteria, additional requirements were defined to cover
non-functional aspects of the PoC. These are evaluated in an argumentation based on

the theory seen in Chapter 2 in the thesis.

4.2.1 Potential security and privacy exploits

The most important non-functional requirement on the PoC, is the security of the
patient data. The requirement is R1 in list 3.1. The details of how this is designed
and some reasoning regarding security in the PoC can be found in Section 3.2.3.
However, something which is not covered by the solution proposed is the publicity of
the medications. Hypothetically, should the system be implemented for only a small
amount of people, and assuming an attacker could know who those persons were, it
could be possible to match blockchain address with a physical identity. For example,
it is not terribly difficult to, based on demographics, medical statistics and some
social hacking to find out what type of illness a person is suffering from. Knowing
what medications are normally used to treat that or those conditions, and finding
a similar combination on the blockchain, the physical identity is connected to the
blockchain account address. On the other hand, if there are a very large amount of
patients, the data is also valuable. Perhaps not as valuable for malicious attackers as
for data scientists, pharmaceutical companies or insurances, data is the new gold and
should perhaps not be given away so easily. But it still does not violate requirement
R1.

Another consideration that needs to be made is that of what takes place before
logging on to the blockchain client. Should the IP address of a user be traceable to an
account address, then all privacy claims would be flawed. Therefore, great care must
be taken when building the surrounding infrastructure, as it cannot be assumed that

a large amount of people will use Tor.!.

IFor more details on secure(ish) browsing, see https:/ /torproject.org/

35

https://torproject.org/

4 Evaluation

User

Traceability

Motivation for fulfilment

Patient

1.1

A registered Patient can access prescriptions by calling the

function getPrescriptions() through InfoManager

1.2

Fulfilled by the infrastructure of the blockchain and permis-
sion levels, both in the component layer and in the contract
layer. (See 3.2 and 3.4)

1.3

A patient can consent to the access to specific prescrip-
tions of Doctors and Pharmacies by calling the function

setConsent () or setPrescripConsent ().

Doctors

21

Verified and registered Doctors can fulfil the re-
quirement by calling functions addPrescription(),
checkPrescription() and getPrescriptions() in

InfoManager.

2.2.

Verification of the identify can be done through a secure
messaging service such as Whisper, on the blockchain. The
patient can also show a prescription to the Doctor on the
Patients device, that the Doctor can also access, thus proving
the Patient identity.

2.3

The Doctor can perform this by calling function

getPrescriptions () for the right patient account address.

24

Fulfilled by the infrastructure of the blockchain and permis-
sion levels, both in the component layer and in the contract
layer. (See 3.2 and 3.4)

Pharmacy

3.1

A Pharmacy can verify a Patient’s prescription by simply
calling the purchase () which will trigger a call to the per-

mission database contract.

3.2

Fulfilled by the infrastructure of the blockchain and permis-
sion levels, both in the component layer and in the contract
layer. (See 3.2 and 3.4)

Table 4.1: Evaluation of user story acceptance based on the EMP PoC.

36

4 Evaluation

There are at least two layers of permissioning in the PoC, because it is a permissioned
blockchain, and because the smart contracts contains logic which is independent
from the blockchain layer. One could also imagine the application of any number of
other security measures a user would have to go through to be granted access and
permissions on on the blockchain. Thereby the requirement R2. is satisfied.

Because the implementation proposes the usage of a blockchain, and as long as more
than two thirds of the validators on that blockchain are benevolent, the record of
the events stated in the requirements; prescription, purchase time and place, can
be considered very safely and immutably stored. An additional explicit logging of
events can be built into the smart contracts, perhaps triggering a completely separate
system to create redundancy in the keeping of records. This satisfies requirement R3.
The smart contracts are built in modular fashion and with a specific contract-
managing contract. This means that any updates to be made to the system of
smart contracts simply need to make a function call to the Cmc. The users will not
experience any changes, or the applications communicating with the blockchain
application will not experience any changes since the address of the interface contract,

the InfoManager, remains the same.

4.3 Outcome

Given the considerations taken to functionality, completeness and performance (in
terms of security and privacy), the artefact and the reasoning behind it is a strong
argument for the usage of such an application for an EMP.

37

Chapter 5

Conclusion

5.1 Summary of results

In this thesis, a proof-of-concept application was built to function as an electronic
medication plan in a completely decentralised way. In order to achieve a peer-to-peer
network secure enough to store personal information a system of smart contracts
developed in the Solidity programming language in combination with a permissioned
blockchain architecture and common cryptographic tools was proposed. The resulting
artefact was then (n.b. post-ex) evaluated according to established design research
criteria and found to fulfil all the necessary requirements. Although the evaluation
criteria were fulfilled, it is important to take notice that no claims on the security
outside of the PoC can be made, based on this thesis. There are ways a private key
can be stolen, note that most cases of credit fraud or are not performed by hacking

into a computer, but by simply resetting an email-account’s password over the phone.

As for the research questions, they have all been answered by the theory sum-
marised in the thesis, as well as the architecture of the application and the reasoning
around it. The research questions are shortly summarised here:

¢ Research question 1: What are the requirements for storage of prescriptions,
patient-, doctor- and pharmacy-profiles on a blockchain application for pre-

scriptions?

* Research question 2: How can the architecture of a blockchain application
for privacy-preserving data-sharing between known, but not necessarily trusted,
parties look like?

38

5 Conclusion

* Research question 3: How can a blockchain application for prescriptions
handling be built in order to ensure that each patient has access control over
prescriptions, that only certified doctors can prescribe medications and that

pharmacies who sell medications perform controls over prescriptions?

Research question 1 is answered in Section 3.1 and the tables therein. Additionally,
the background of those requirements is exposed i Chapter 2.

Research question 2 is answered in Section 3.2.1, where the design of the implementa-
tion is shown. One possible architecture of an electronic medication plan is explained,
based on blockchain technology and a system of smart contracts.

Research question 3 is answered through the design of the system of smart contracts,
as well as the discussion and design choices made in Section 3.2.3 and in Section
42.1.

5.2 Discussion

5.2.1 Generalisation and extension into other domains

The objective of this thesis was to solve a very specific problem in the health care
sector, however, one can not fail to realise the potential cross-over effects it could
have on other industries. It is essentially an application which lets users register
information and then in a highly controlled manner share it with distinctive partners.
Consider a group of banks and perhaps even other regulated entities who are highly
dependent on information about their customers. This is basically every company or
organisation which provides a financial service, or an internet provider, or mobile
phone operator. All of them need to know personal information on their customers,
by law. Now let us apply the concept of the PoC to this situation. A customer
registers and encrypts information on the blockchain using slightly modified smart
contracts. When a bank or other organisation needs to have access to that information,
they simply make a request to the customer who can reject or accept the request.
What makes it different from a normal centralised server is that there is immutable
traceability, and more importantly, customers could have the power and right to
question the usage of personal information by corporations. Selling of information

would have to be consensual on a much clearer level than it is in most systems today.

39

5 Conclusion

Another area of application could be in a large corporate setting, where information-

sharing is essential but very difficult when dealing with secret or sensitive data.

5.2.2 Future work

Blockchain technology is constantly evolving, both in the private and public sector.
Much progress was made during the six months in which this thesis was written,
and a research community has begun to form. The introduction of blockchain
technology-related topics at research conferences ! and the launch of blockchain-

2 are critical efforts in encouraging further

focussed peer-reviewed research papers
research. There is no doubt that much more technological development is needed,
both in academia and innovation coming from the industry. The benefits and prob-
lems it solves need to be communicated and an understanding for blockchain outside
of cryptocurrencies needs to be spread. In the context of this thesis, there are areas of
interest which could be further developed. For example, introducing a functionality
for automatically controlling medications against a database of known harmful or
unintended interactions. Or creating a completely blockchain-based version of elec-
tronic health records, including medication plans, vaccinations, etc.

There are also a large potential for fundamental research within distributed comput-
ing based on blockchain technology, specifically consensus algorithms and lightweight
protocols for Internet-of-Things applications. With regards to the emerging decen-
tralised economic system that is cryptocurrencies, there are many important questions
related to game theory. Proof-of-Work solves the consensus problem at an increas-
ingly high computational cost in the Bitcoin system, it would be a very important
tinding should that problem be solved in a provably secure manner, without the

energy cost and the drawbacks of Proof-of-Stake.

151st annual Hawaii International Conference on System Sciences (http:/ /hicss.hawaii.edu/tracks-
51/internet-and-the-digital-economy/)
2The aptly named Ledger, (http://ledgerjournal.org/)

40

Bibliography

Alfred J. Menezes, S. A. V., Paul C. van Oorschot. (1996). Handbook of applied cryptogra-
phy (5th ed.). CRC Press. Retrieved from cacr.uwaterloo.ca/hac

Azaria, A., Ekblaw, A., Vieira, T., & Lippman, A. (2016). Medrec: Using blockchain
for medical data access and permission management. In 2016 2nd international
conference on open and big data (obd) (pp. 25-30). d0i:10.1109/0OBD.2016.11

Back, A. (1997). A partial hash collision based postage scheme. Announcement. Online
Multimedia. Retrieved from http:/ /www.hashcash.org/papers/announce.txt

Bobb, A., Gleason, K., & Husch, M. e. a. (2004). The epidemiology of prescribing
errors: The potential impact of computerized prescriber order entry. Arch Intern
Med, 164, 785-792.

Braxendale, G. (2016). Bitcoin technology and the NHS. Digital Health.

Brown, S. (2016). Visualise, document and explore your software architecture - software
architecture for developers. Leanpub. Retrieved from https:/ /leanpub.com /
visualising-software-architecture

Buterin, V. (2015). Visions, part 1: The value of blockchain technology. Retrieved
from https:/ /blog.ethereum.org/2015/04 /13 /visions-part-1-the-value-of-
blockchain-technology /

Buterin, V. (2016). Critical update re: Dao vulnerability. Blog. Retrieved from https:
/ /blog.ethereum.org/2016/06/17 / critical-update-re-dao-vulnerability /

Cynthia Dwork, M. N. (1992). Pricing via processing or combatting junk mail. In
Crypto '92 proceedings of the 12th annual international conference on advances in
cryptology (pp. 139-147). Springer-Verlag.

Ethereum GitHub Wiki - Proof of Stake FAQ. (2017). Retrieved from https://github.
com/ethereum /wiki/wiki/Proof-of-Stake-FAQ

Ethereum Homestead Documentation - What is Ethereum. (2016). Retrieved from
http://ethdocs.org/en/latest/introduction/what-is-ethereum.html

41

cacr.uwaterloo.ca/hac
https://dx.doi.org/10.1109/OBD.2016.11
http://www.hashcash.org/papers/announce.txt
https://leanpub.com/visualising-software-architecture
https://leanpub.com/visualising-software-architecture
https://blog.ethereum.org/2015/04/13/visions-part-1-the-value-of-blockchain-technology/
https://blog.ethereum.org/2015/04/13/visions-part-1-the-value-of-blockchain-technology/
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
http://ethdocs.org/en/latest/introduction/what-is-ethereum.html

Bibliography

Fischer, M. J. (1983). The consensus problem in unreliable systems (a brief survey). In
International conference on foundations of computation theory.

Gabriel MH, S. M. (2014). E-prescribing trends in the United States. Office of the National
Coordinator for Health Information Technology.

Griggs, 1. (2015). Retrieved from http:/ /iang.org/papers/intersection_ricardian_
smart.html

Hamid, T., Harper, L., Rose, S., Petkar, S., Fienman, R., Athar, S. M., & Cushley,
M. (2016). Prescription errors in the national health services, time to change
practice. Scottish Medical Journal, 61(1), 1-6. PMID: 27101837. doi:10.1177 /
0036933015619585. eprint: http:/ /dx.doi.org/10.1177/0036933015619585

Hevner, A. R., March, S. T, Park, J., & Ram, S. (2004). Design science in information
systems research. MIS Quarterly.

Hotmine Inc. (2016). Retrieved from http://en.hotmine.io/

How does blockchain work? (2016). Retrieved from https:/ /www.ibm.com /
blockchain/what-is-blockchain.html

Irving, G. & Holden, J. (2016). How blockchain-timestamped protocols could improve
the trustworthiness of medical science. F1000 Research.

ISO/TC 307, Blockchain and electronic distributed ledger technologies. (2016). Re-
trieved from https://www.iso.org/committee /6266604.html

Jpmorgan chase hacking affects 76 million households. (2014). The New York Times,
http:/ /nyti.ms/1rQidvG.

Kish, L. J. & Topol, E. J. (2015). Unpatients - why patients should own their medical
data. Nature Biotechnology, 33, 921-924. doi:10.1038 /nbt.3340

Kosba, A., Miller, A., Shi, E.,, Wen, Z., & Papamanthou, C. (2015). Hawk: The
blockchain model of cryptography and privacy-preserving smart contracts.
In Berkeley-simons secure computation workshop.

Krawiec, R., Housman, D., White, M., Filipova, M., Quarre, F.,, Barr, D., ... Tsai, L.
(2016). Blockchain technology: Opportunities for healthcare. This white paper
was developed in response to the Department of Health and Human Services’
Office of the National Coordinator for Health Information Technology (ONC)
ideation challenge.

42

http://iang.org/papers/intersection_ricardian_smart.html
http://iang.org/papers/intersection_ricardian_smart.html
https://dx.doi.org/10.1177/0036933015619585
https://dx.doi.org/10.1177/0036933015619585
http://dx.doi.org/10.1177/0036933015619585
http://en.hotmine.io/
https://www.ibm.com/blockchain/what-is-blockchain.html
https://www.ibm.com/blockchain/what-is-blockchain.html
https://www.iso.org/committee/6266604.html
https://dx.doi.org/10.1038/nbt.3340

Bibliography

Mattila, J. (2016). The blockchain phenomenon. the disruptive potential of dis-
tributed consensus architectures. BERKELEY ROUNDTABLE ON THE IN-
TERNATIONAL ECONOMY (BRIE).

Medical Records Project Wins Top Prize at Blockchain Hackathon. (2015). Retrieved
from http:/ /www.coindesk.com/medvault-wins-e5000-at-deloitte-sponsored-
blockchain-hackathon/

Merkle, R. C. (1988). A digital signature based on a conventional encryption function,
p369.

Monax - Blockchain explainer. (2016). Retrieved from https://monax.io/explainers/
blockchains/

Monax - Solidity explainer: The Five-types model. (2016). Retrieved from https:
/ /monax.io/docs/tutorials/solidity /solidity_1_the_five_types_model

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Online Multime-
dia. Retrieved from https:/ /bitcoin.org/bitcoin.pdf

Nugent, T., Upton, D., & Cimpoesu, M. (2016). Improving data transparency in clinical
trials using blockchain smart contracts [version 1; referees: 3 approved]. F1000
Research, 5(2541). doi:10.12688/£1000research.9756.1

Okada, H., Yamasaki, S., & Bracamonte, V. (2017). Proposed classification of blockchains
based on authority and incentive dimensions. In 2017 19th international conference
on advanced communication technology (icact) (pp. 593-597). d0i:10.23919/ICACT.
2017.7890159

Rivest, R., Shamir, A., & Adleman, L. (1978). A method for obtaining digital signatures
and public-key cryptosystems. CACM, 21(2), 120-126. Retrieved from http:
//doi.acm.org/10.1145/359340.359342

Stevens, M., Bursztein, E., Karpman, P., Albertini, A., & Markov, Y. (2017). The first
collision for full sha-1. Retrieved from https:/ /shattered.io

Szabo, N. (1994). Smart contracts. Retrieved from http:/ /virtualschool.edu/mon /
Economics/SmartContracts.html

Szabo, N. (1997). Formalizing and securing relationships on public networks. First
Monday, 2(9). Retrieved from http://ojphi.org/ojs/index.php/fm/article/view/
548

Tendermint. (2017). Retrieved from https://tendermint.com/intro

43

http://www.coindesk.com/medvault-wins-e5000-at-deloitte-sponsored-blockchain-hackathon/
http://www.coindesk.com/medvault-wins-e5000-at-deloitte-sponsored-blockchain-hackathon/
https://monax.io/explainers/blockchains/
https://monax.io/explainers/blockchains/
https://monax.io/docs/tutorials/solidity/solidity_1_the_five_types_model
https://monax.io/docs/tutorials/solidity/solidity_1_the_five_types_model
https://bitcoin.org/bitcoin.pdf
https://dx.doi.org/10.12688/f1000research.9756.1
https://dx.doi.org/10.23919/ICACT.2017.7890159
https://dx.doi.org/10.23919/ICACT.2017.7890159
http://doi.acm.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342
https://shattered.io
http://virtualschool.edu/mon/Economics/SmartContracts.html
http://virtualschool.edu/mon/Economics/SmartContracts.html
http://ojphi.org/ojs/index.php/fm/article/view/548
http://ojphi.org/ojs/index.php/fm/article/view/548
https://tendermint.com/intro

Bibliography

van Dijk, M. & Juels, A. (2010). On the impossibility of cryptography alone for
privacy-preserving cloud computing. In Proceedings of the 5th usenix conference
on hot topics in security (pp. 1-8). HotSec10.

Vasek, M. & Moore, T. (2015). There’s no free lunch, even using bitcoin: Tracking the
popularity and profits of virtual currency scams. In International conference on
financial cryptography and data security (pp. 44-61). Springer.

Waltering, 1., Schwalbe, O., & Hempel, G. (2015). Discrepancies on medication plans
detected in german community pharmacies. Journal of Evaluation in Clinical
Practice, 21(5), 886-892. d0i:10.1111/jep.12395

Whitfield Diffie, M. E. H. (1976). New directions in cryptography. IEEE Transactions
on Information Theory, 22(6), 644-654.

Zyskind, G., Nathan, O., & Pentland, A. S. (2015). Decentralizing privacy: Using
blockchain to protect personal data. In Security and privacy workshops (SPW),
2015 IEEE (pp. 180-184).

44

https://dx.doi.org/10.1111/jep.12395

Appendix A

1 pragma solidity ~0.4.11;

2

3

4 // Base class for contracts that are used in a cmc system.

5 contract CmcEnabled {

6 address CMC;

7

8 function setCMCAddress(address cmcAddr) returns (bool result){
9 // Once the cmc address is set, don't allow it to be set again, except by the
10 // cmc contract itself.

11 if (CMC !'= 0x0 && msg.sender != CMC){

12 return false;

13 }

14 CMC = cmcAddr;

15 return true;

16 }

17

18 // Makes it so that CMC is the only contract that may kill it.
19 function remove(){

20 if (msg.sender == CMC){

21 selfdestruct (CMC) ;

22 ¥

23 }

24

25 }

26

27 // Base class for contracts that only allow the infomanager to call them.
28 // Note that it inherits from CmcEnabled
29 contract InfoManagerEnabled is CmcEnabled {

30

31 // Makes it easier to check that infomanager is the caller.

32 function isInfoManager() constant returns (bool) {

33 if (CMC !'= 0x0){

34 address im = ContractProvider(CMC) .contracts("infomanager");
35 return msg.sender == im;

36 }

37 return false;

45

38
39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

// The Contract managing contract.
contract CMC {

address owner;

// This is where we keep all the contracts.

mapping(bytes32 => address) public contracts;

modifier onlyOwner { //a modifier to reduce code replication

if (msg.sender == owner) // this ensures that only the owner can access the

function
}
// Constructor
function Cmc(){

owner = msg. sender;

// Add a new contract to Cmc. This will overwrite an existing contract.

function addContract(bytes32 name, address addr) onlyOwner returns (bool result)

{

CmcEnabled cmce = CmcEnabled(addr) ;

// Don't add the contract if this does not work.
if (!cmce.setCMCAddress (address(this))) {

return false;
}
contracts[name] = addr;

return true;

function getContract(bytes32 name) constant returns (address addr) {

return contracts[name];

// Remove a contract from Cmc. We could also selfdestruct if we want to.

function removeContract(bytes32 name) onlyOwner returns (bool result) {

if (contracts[name] == 0x0){

46

76 return false;

77 }

78 contracts[name] = 0x0;

79 return true;

80 }

81

82 function remove() onlyOwner {

83 address im = contracts["infomanager"];

84 address ime = contracts["infomanagerenabled"];
85 address perms = contracts["permissions"];

86 address permsdb = contracts["permissionsdb"];
87 address patient = contracts["patient"];

88 address patientinfodb = contracts["patientinfodb"];
89 address doctor = contracts["doctor"];

90 address pharmacy = contracts["pharmacy"];

91

92

93 selfdestruct (owner) ;

94 }

95

9% }

97 // The info manager

98 contract InfoManager is CmcEnabled {

99

100 // We still want an owner.

101 address owner;

102

103 // Constructor

104 function InfoManager(){

105 owner = msg.sender;

106 }

107

108 // Attempt to prescribe a new medication to a patient

109 function addPrescription(address patAddr, bytes32 prescription) returns (bool res
) {

110 if (prescription == 0x0 || patAddr == 0x0){

111 return false;

112 }

113 address doctor = ContractProvider (CMC).contracts("doctor");

114 address permsdb = ContractProvider (CMC) .contracts("permsdb") ;

47

115

116
117
118
119
120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

138
139
140
141
142
143

144

145
146
147
148

if (doctor == 0x0 || permsdb == 0x0 || PermissionsDb(permsdb) .perms(msg.
sender) < 1) {
// If the user doesn't have the right to prescribe, return false

return false;

// Use the interface to call on the doctor contract. We pass drugHash and the
patient address along as well.

bool success = Doctor(doctor).addPatient (msg.sender, patAddr, prescription);

// If the transaction failed, return the token to the sender
if (!success) {
msg . sender . send (msg.value) ;

3

return success;

function addPatient(address patAddr, bytes32 prescription) returns (bool res) {

uint8 requestCode = 2;
if (patAddr == 0x0){
return false;
}
address doctor = ContractProvider (CMC) .contracts("doctor");

address perms = ContractProvider (CMC) .contracts("perms");

if (doctor == 0x0 || perms == 0x0 || Permissions(perms).checkPerms(msg.sender
) < 1 || Permissions(perms).checkConsent (msg.sender, requestCode, patAddr)
) {

// If the user doesn't have the right to prescribe return false
//msg.sender.send (msg.value) ;

return false;

// Use the interface to call on the doctor contract. We pass drugHash and the
patient address along as well.
bool success = Doctor(doctor) .addPrescription(msg.sender, patAddr,

prescription) ;

// If the tramnsaction failed, return the token to the sender
if (!success) {

msg.sender.send (msg.value) ;

48

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

173

174
175
176
177
178
179
180
181
182
183
184
185
186

}

return success;

//function getPrescription

//function confirmPrescription

//function add

//function checkPrescripConsent

//function setConsent

//function setPrescripConsent

// Buy/check-out prescribed medication. Should be called by pharmacist
function purchase(address patAddr, bytes32 drugHash) returns (bool res) {
if (drugHash == 0){
return false;
}
address pharmacy = ContractProvider (CMC).contracts("pharmacy") ;
address permsdb = ContractProvider (CMC).contracts("permissionsdb");
if (pharmacy == 0x0 || permsdb == 0x0 || PermissionsDb(permsdb) .perms (msg.
sender) < 2) {
// If the caller doesn't have permission to buy prescribed medication,
return false.

return false;

// Use the interface to call on the doctor contract

bool success = Pharmacy(pharmacy) .purchase(patAddr, drugHash);

// If the transaction succeeded, pass the token back to the caller.
if (success) {
msg.sender.send (msg.value) ;

3

return success;

49

187 // Set the permissions for a given address.

188 function setPermission(address addr, uint8 permLvl) returns (bool res) {
189 address permsdb = ContractProvider(CMC) .contracts("permissionsdb");
190 if (permsdb == 0x0) {

191 return false;

192 }

193 uint8 userPerm = PermissionsDb(permsdb) .perms(addr) ;

194 if (userPerm < 3) {

195 return false;

196 }

197 return PermissionsDb(permsdb) .setPermission(addr, permLvl);

198 }

199

200 function setConsent(address addr, uint8 consentCode) returns (bool) {
201 address patient = ContractProvider (CMC).contracts("patient");

202 if (patient == 0x0) {

203 return false;

204 }

205 return Patient(patient).setConsent(msg.sender, addr, consentCode) ;
206 }

207 '}

208

209 // Interface for getting contracts from Cmc

210 contract ContractProvider {

211 function contracts(bytes32 name) returns (address addr) {}

212}

213

214 // Permissions database

215 contract PermissionsDb is CmcEnabled {

216

217 struct consentedPatientPrescriptionTuple {
218 address doctor;

219 bytes32 prescription;

220 }

221

222 struct consentPatientCode {

223 address docOrPharm;

224 uint8 consentCode;

225 }

226 mapping (address => uint8) public perms;

50

227
228

229
230
231
232

233

234

235
236
237
238
239
240
241
242
243
244
245
246
247

248
249
250
251
252
253

254
255
256
257
258
259
260

mapping (address => consentPatientCode) public patientDoctorConsent;
mapping (address => consentedPatientPrescriptionTuple) public

prescripPatientConsent;

// Set the permissions of an account.
// Permissions:
// O - Patient permissions, e.g. only allowed to read info related to one's own
address
// 1 - Pharmacy permissions, e.g. allowed to read info about patient who shared
it's address
// 2 - Doctor permissions, allowed to add patients, add prescriptions and read
info about patients
function setPermission(address addr, uint8 perm) returns (bool res) {
if (CMC != 0x0){
address permC = ContractProvider (CMC) .contracts("perms");
if (msg.sender == permC){
perms [addr] = perm;
return true;
3
return false;
} else {

return false;

// Allow patients to consent to other users to perfom actions on their behalf
such as adding prescriptions
// Permissions:
// 0 - no permission
// 1 - addr, being a pharmacy, can sell prescribed medication to sender
// 2 - addr, being a doctor, can prescribe medication for sender
// 3 - addr, being a doctor, can add sender as patient with a prescription
function setConsent(address patAddr, address docOrPharmAddr, uint8 consentCode)
returns (bool res) {
if (CMC !'= 0x0){
address patientC = ContractProvider (CMC) .contracts("patient");
var cons = consentPatientCode(docOrPharmAddr, consentCode) ;
if (consentCode < 4 && msg.sender == patientC){
patientDoctorConsent [patAddr] = cons;
return true;
} else {

51

261
262
263
264
265
266
267

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

return false;

}

return false;

function setPrescripConsent(address patAddr, address docAddr, bytes32

prescription) returns (bool res) {
if (CMC !'= 0x0){
address patientC = ContractProvider (CMC) .contracts("patient");
var consPP = consentedPatientPrescriptionTuple(docAddr, prescription);
if (msg.sender == patientC){
prescripPatientConsent [patAddr] = consPP;
return true;
} else {

return false;

3

return false;

// Permissions

contract Permissions is InfoManagerEnabled {

// Set the permissions of an account.

function setPermission(address addr, uint8 perm) returns (bool res) {

if (!isInfoManager()){
return false;
}
address permdb = ContractProvider (CMC) .contracts("permsdb");
if (permdb == 0x0) {
return false;
}

return PermissionsDb(permdb) .setPermission(addr, perm);

function checkPerms(address addr) returns(uint){

}

52

300 function checkConsent(address docAddr, uint8 consentCode, address patAddr)
returns (bool){

301 }

302 }

303

304

305

306 // The patientInfo database

307 contract PatientInfoDb is CmcEnabled{

308

309 // List element

310 struct Patient {

311 address prev;

312 address next;

313 // Data

314 bytes32[] prescriptions; //Array of prescriptions;

315 address[] responsible; // Array of responsible person for corresponding

prescription

316 bool init;

317 }

318

319 uint public size;

320 address public tail;

321 address public head;

322 mapping (address => Patient) public patientList;

323 //mapping (address => bytes32[]) public prescriptions;

324

325 // Add a new patient with a prescription. This will overwrite an existing
prescription. 'internal' modifier means

326 // it has to be called by an implementing class.

327 function addPatient(address respAddr, address patAddr, bytes32 prescription)
returns (bool) {

328 if (CMC !'= 0x0) {

329 address doctor = ContractProvider (CMC).contracts("doctor");

330 if (msg.sender == doctor) {

331 if (patientList [patAddr].init == false) {

332 bytes32[] presc;

333 presc.push(prescription) ;

334 address[] resp;

335 resp.push(respAddr) ;

53

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

371
372
373

Patient memory pat = Patient(0,0,presc,resp,true);
patientList [patAddr] = pat;
// Two cases - empty or not.
if (size == 0){
tail = patAddr;
head = patAddr;
} else {
patientList [head] .next = patAddr;
patientList [patAddr] .prev = head;
head = patAddr;
3
sizet+;

return patientList[patAddr].init;

}

return false;

function addPrescription(address resp, address patAddr, bytes32 prescription)
returns (uint result) {
if (patientList [patAddr].init == false) {
//return code O means patient not found
return 0O;
} else if(prescription == 0) {
//return code 1 means no prescription given
return 1;
} else {
//return code 2 means prescription added to patient
patientList [patAddr] .prescriptions.push(prescription);
patientList [patAddr] .responsible.push(resp) ;

return 2;

function _getPrescriptionByIndex(address patAddr, uint8 index) returns (bytes32)
{
if (CMC !'= 0x0) {
address doctor = ContractProvider (CMC).contracts("doctor");

address patient = ContractProvider (CMC).contracts("patient");

54

374 if (msg.sender == doctor || msg.sender == patient) {

375 if (patientList [patAddr].init == false) {

376 //patient not found

377 return 0x0;

378 } else {

379 return patientList[patAddr].prescriptions[index];
380 }

381 }

382 }

383 }

384

385 function getNumOfPrescriptions(address patAddr) returns (uint256){
386 if (CMC !'= 0x0) {

387 address doctor = ContractProvider (CMC).contracts("doctor");
388 address patient = ContractProvider (CMC).contracts("patient");
389 if (msg.sender == doctor || msg.sender == patient) {

390 if (patientList [patAddr].init == false) {

391 //patient not found

392 return 0;

393 } else {

394 return patientList[patAddr].prescriptions.length;
395 }

396 }

397 }

398 }

399

400 //requires the caller to know the hash of the prescription, confirms whether

prescription exists or not

401 function confirmPrescription(address patAddr, bytes32 prescription) returns (bool
){

402 if (CMC !'= 0x0) {

403 //Ensure caller is doctor or pharmacy

404 address doctor = ContractProvider (CMC).contracts("doctor");

405 address pharmacy = ContractProvider (CMC) .contracts("pharmacy") ;

406 address patient = ContractProvider (CMC).contracts("patient");

407 if (msg.sender == doctor || msg.sender == pharmacy) { //Ensure sender is

doctor or pharmacy

408 if (patientList[patAddr] .init == false || prescription == 0) {
409 return false;
410 }

55

411
412
413
414
415
416

417

418
419
420
421

422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

439
440
441
442

443
444
445

for (uint i = 0; i<patientList[patAddr].prescriptions.length; i++) {

if (patientList [patAddr] .prescriptions[i] != 0) {
return true;
}
}
} else if(msg.sender == patient || msg.sender == doctor) { //If sender is

neither doctor nor pharmacy, check if sender is patient
if (patientList [patAddr].init == false || prescription == 0) { //only
allow patient to confirm
return false; // proprietary prescriptions
}
for (1 = 0; i<patientList[patAddr].prescriptions.length; i++) {
if (patientList [patAddr] .prescriptions[i] != 0 && i<1000) { //Check
if i:th
return true; //prescription is the requested one.
} //Cap at 1000 if list has length>1000

}

return false;

function isPatient(address patAddr) returns (bool){
if (patientList [patAddr] .init == true) {
return true;
} else {

return false;

//function getPrescriptionByIndex(address patAddr, uint8 index) returns (bytes32)
{

//}

// function getAllPrescriptions(address patAddr) returns (bytes32[] prescriptions
)

// if (patientList[addr] != 0x0) {

// return false;

//

56

446 // return patientList[patAddr].prescriptions;
447 /7 }

448

449

450

451 }

452 // Patients

453 contract Patient is InfoManagerEnabled {

454 // Consent levels:

455 // 0 - no permissions

456 // 1 - addr, being a pharmacy, can sell prescribed medication to sender

457 // 2 - addr, being a doctor, can prescribe medication for sender

458 // 3 - addr, being a doctor, can add sender as patient with a prescription

459 // Set level of consent for a specific address

460 function setConsent(address patAddr, address addr, uint8 consentCode) returns (

bool success) {

461 if (!isInfoManager ()){

462 return false;

463 }

464 address permissionsdb = ContractProvider (CMC) .contracts("permissionsdb") ;
465 if (permissionsdb == 0x0) {

466 // If the user sent a token, we should return it if we can't prescribe.
467 return false;

468 }

469

470 // Use the permissionsdb-interface to call on the permissionsdb contract to

set consent level

471 success = PermissionsDb(permissionsdb) .setConsent (patAddr, addr, consentCode);

472

473 return success;

474 }

475 //set prescription consent

476 function setPrescripConsent(address patAddr, address docAddr, bytes32
prescription) returns (bool res) {

477 if (!isInfoManager ()){

478 return false;

479 }

480 address permissionsdb = ContractProvider (CMC) .contracts("permissionsdb");

481 if (permissionsdb == 0x0) {

482 //Can't set consent.

57

483
484
485
486

487

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512

513
514
515
516
517
518
519

return false;

// Use the permissionsdb-interface to call on the permissionsdb contract to
set consent level
res = PermissionsDb(permissionsdb) .setPrescripConsent (patAddr, docAddr,

prescription) ;

return res;

function _getNumOfPrescriptions(address patAddr) internal returns (uint256) {
if (CMC != 0x0) {
address patientinfodb = ContractProvider (CMC).contracts("patientinfodb");
if (patientinfodb != 0x0) {
PatientInfoDb pat = PatientInfoDb(patientinfodb) ;
uint256 len = pat.getNumOfPrescriptions(patAddr);

return len;

}

function getPrescriptions(){

// A Doctor

contract Doctor is InfoManagerEnabled {

// Register a Patient with address and (optionally) prescription
function addPatient(address docAddr, address patAddr, bytes32 prescription)
returns (bool res) {
if (!isInfoManager()){
return false;
}
address patientInfodb = ContractProvider (CMC) .contracts("patientInfodb");
if (patientInfodb == 0x0) {
// If the user sent a token, we should return it if we can't prescribe.

msg.sender.send (msg.value) ;

58

520
521
522
523

524

525
526
527
528
529
530
531
532
533
534

535
536
537
538
539
540
541
542
543
544
545

546

547
548
549
550
551
552
553
554

return false;

// Use the interface to call on the patientInfodb contract. We pass msg.value
along as well.
bool success = PatientInfoDb(patientInfodb) .addPatient(docAddr, patAddr,

prescription) ;

// If the prescription failed, return the Token to the caller.
if (!success) {

msg.sender.send(msg.value) ;
b

return success;

// prescribe a medication, drughash for patient with address patAddr

function addPrescription(address docAddr, address patAddr, bytes32 prescription)

returns (bool res) {
if (!isInfoManager()){
return false;
}
address patientInfodb = ContractProvider (CMC) .contracts("patientInfodb");
if (patientInfodb == 0x0) {
// If the user sent a token, we should return it if we can't prescribe.
msg.sender.send (msg.value) ;

return false;

// Use the interface to call on the patientdb contract. We pass msg.value
along as well.
uint result = PatientInfoDb(patientInfodb).addPrescription(docAddr, patAddr,

prescription) ;

if (result == 0 || result == 1) {
return false;

} else if(result == 2) {
return true;

} else {

return false;

59

555 }

556

557 function confirmPrescription(address patAddr, bytes32 drugHash) returns (bool) {

558 if (!isInfoManager ()){

559 return false;

560 }

561 address patientInfodb = ContractProvider (CMC) .contracts("patientinfodb");

562 if (patientInfodb == 0x0) {

563 msg.sender.send (msg.value) ;

564 return false;

565 }

566

567 // Use the interface to call on the patientdb contract. We pass msg.value

along as well.

568 return PatientInfoDb(patientInfodb).confirmPrescription(patAddr, drugHash);

569

570 }

571 //Check if

572 function checkPrescripConsent(address patAddr, bytes32 prescriptions) internal
returns (bool) {

573

574 }

575

576 function isPatient(address patAddr) returns (bool) {

577 if (!isInfoManager ()){

578 return false;

579 }

580 address patientinfodb = ContractProvider (CMC) .contracts("patientinfodb");

581 if (patientinfodb == 0x0) {

582 return false;

583 }

584

585 return PatientInfoDb(patientinfodb) .isPatient (patAddr) ;

586 }

587

588 // //get all prescriptions of a patient

589 // function getAllPrescriptions(address patAddr) returns (bool res){

590 // if (!isInfoManager()){

591 // return false;

592 // %}

60

593 // address doctordb = ContractProvider (DOUG) .contracts("Doctordb");
594 // if (doctordb == 0x0) {

595 // // If the user sent a token, we should return it if we can't prescribe.

596 // msg.sender.send(msg.value) ;

597 // return false;

598 // %}

599

600 // // Use the interface to call on the doctordb contract. We pass msg.value along
as well.

601 // bool success = DoctorDb(doctordb) .getAllPrescriptions.value(patAddr) (msg.
sender) ;

602

603 // // If the prescription failed, return the Token to the caller.

604 // if (!success) {

605 // msg.sender.send(msg.value) ;

606 /] }

607 // return success;

608 // %}

609 }

610

611

612 //A Pharmacy
613 contract Pharmacy is InfoManagerEnabled {

614 event PrescriptionSold;

615

616 //Confirm prescription

617 function confirmPrescription(address patAddr, bytes32 prescription) returns (bool
) {

618 if (!isInfoManager ()){

619 return false;

620 }

621 address patientInfodb = ContractProvider (CMC) .contracts("patientInfodb");

622 if (patientInfodb == 0x0) {

623 msg.sender.send(msg.value) ;

624 return false;

625 }

626

627 // Use the interface to call on the doctordb contract.

628 return PatientInfoDb(patientInfodb) .confirmPrescription(patAddr, prescription)

>

61

629

630 }

631

632 function purchase(address patAddr, bytes32 prescription) returns (bool res) {
633 //call infomanager function purchase

634 }

635 }

62

	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Purpose and research questions
	Limitations
	Related work

	Technical Background
	Cryptography
	Basic terminology
	Hash functions, private- and public-key cryptography
	Digital signatures

	Blockchain Technology
	Bitcoin - the first blockchain
	Post-Bitcoin blockchains
	Permissions and specialisation
	Smart Contracts and Ethereum
	Consensus algorithms

	Implementation
	User stories and requirements
	Design of the PoC
	Design overview
	System of smart contracts
	Data and variables on the blockchain
	Supporting infrastructure and governance

	Evaluation
	Description of evaluation criteria
	Fulfilment of evaluation criteria
	Potential security and privacy exploits

	Outcome

	Conclusion
	Summary of results
	Discussion
	Generalisation and extension into other domains
	Future work

	Bibliography

