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Abstract

In this paper we discuss a design philosophy for interoperable blockchain systems, us-

ing the design philosophy of the Internet architecture as the basis to identify key design

principles. We recast some of the challenges faced in the design of the Internet archi-

tecture to that of the design of an interoperable blockchain architecture. We emphasize

interoperability as a crucial requirement for the survivability of blockchain autonomous

systems.
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1 Introduction

The goal of this paper is to bring to the forefront the notion of interoperability for blockchain

systems, using lessons learned from the three decades of the development of the Internet. Our

overall goal is to develop a design philosophy for an interoperable blockchain architecture,

and to identify some design principles that promote interoperability.

Currently there is considerable interest (real and hype) in blockchain systems as a promis-

ing technology for the future infrastructure of a global value-exchange network – or what some

refer to as the “Internet of value”. The original blockchain idea of Haber and Stornetta [1, 2]

is now a fundamental construct within most blockchain systems, starting with the Bitcoin

system which first adopted the idea and deployed it in a digital currency context.

Many parallels have been made between blockchain systems and the Internet. However,

many comparisons often fail to understand the fundamental goals of the Internet architecture

as promoted and led by DARPA, and thus fail to fully appreciate how these goals have shaped

the Internet to achieve its success as we see it today. There was a pressing need in the Cold

War period of the 1960s and 1970s to develop a new communications network architecture

that did not previously exist, one that would allow communications to survive in the face of

attacks. In Section 2 we review and discuss these goals.
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We argue in this paper that if blockchain technology seeks to be a fundamental component

of the future global distributed network of commerce and value, then its architecture must

also satisfy the same fundamental goals of the Internet architecture. In Section 3 we attempt

to re-cast some of these fundamental goals of the Internet to the current context of blockchain

technology. Among others, we look for some design principles for blockchain technology that

should remain true across any blockchain system implementation.

This is followed by Section 4 in which we discuss the interoperability design aspects of the

MIT Tradecoin project, mapping much of the Internet’s constructs to that of the blockchain

architecture. In Section 5 we briefly discuss the current emerging interest for central bank

digital currencies, and pose questions regarding the survivability of those digital currencies.

2 The Design Philosophy of the Internet

In considering the future direction for blockchain systems generally, it is useful to recall and

understand goals of the Internet architecture as defined in the early 1970s as a project funded

by DARPA. The definition of the Internet as view in the late 1980s is the following: it is “a

packet switched communications facility in which a number of distinguishable networks are

connected together using packet switched communications processors called gateways which

implement a store and forward packet-forwarding algorithm” [3, 4].

2.1 Fundamental Goals

It is important to remember that the design of the ARPANET and the Internet favored

military values (e.g. survivability, flexibility, and high performance) over commercial goals

(e.g. low cost, simplicity, or consumer appeal) [5], which in turn has affected how the Internet

has evolved and has been used. This emphasis was understandable given the Cold War

backdrop to the packet-switching discourse throughout the 1960s and 1970s.

The DARPA view at the time was that there are seven (7) goals of the Internet archi-

tecture, with the first three being fundamental to the design, and the remaining four being

second level goals. The following are the fundamental goals of the Internet in the order of

importance [3, 4]:

1. Survivability: Internet communications must continue despite loss of networks or gate-

ways.

This is the most important goal of the Internet, especially if it was to be the blueprint for

military packet switched communications facilities. This meant that if two entities are

communicating over the Internet, and some failure causes the Internet to be temporarily

disrupted and reconfigured to reconstitute the service, then the entities communicating

should be able to continue without having to reestablish or reset the high level state of

their conversation. Therefore to achieve this goal, the state information which describes

the on-going conversation must be protected. But more importantly, in practice this

explicitly meant that it is acceptable to lose the state information associated with an

entity if, at the same time, the entity itself is lost. This notion of state of conversation

is related to the end-to-end principle discussed below.
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2. Variety of service types: The Internet must support multiple types of communications

service.

What was meant by “multiple types” is that at the transport level the Internet architec-

ture should support different types of services distinguished by differing requirements

for speed, latency and reliability. Indeed it was this goal that resulted in the separation

into two layers of the TCP layer and IP layer, and the use of bytes (not packets) at the

TCP layer for flow control and acknowledgement.

3. Variety of networks: The Internet must accommodate a variety of networks.

The Internet architecture must be able to incorporate and utilize a wide variety of

network technologies, including military and commercial facilities.

The remaining four goals of the Internet architecture are: (4) distributed management

of resources, (5) cost effectiveness, (6) ease of attaching hosts, and (7) accountability in

resource usage. Over the ensuing three decades these second level goals have been addressed

in different ways. For example, accountability in resource usage evolved from the use of

rudimentary management information bases (MIB) [6, 7] into the current sophisticated traffic

management protocols and tools. Cost effectiveness was always an important aspect of the

business model for consumer ISPs and corporate networks.

2.2 The End-to-End Principle

One of the critical debates throughout the development of the Internet architecture in the

1980s was in regards to the placement of functions that dealt with reliability of message

delivery (e.g. duplicate message detection, message sequencing, guaranteed message delivery,

encryption). In essence the argument revolved around the amount of effort put into reliability

measures within the data communication system, and was seen as an engineering trade-off

based on performance. That is, how much low-level function (for reliability) needed to be

implemented by the networks versus implementation by the applications at the endpoints.

The line of reasoning against low-level function implementation in the network became

known as the end-to-end argument or principle. The basic argument is as follows: a lower

level subsystem that supports a distributed application may be wasting its effort in providing

a function that must be implemented at the application level anyway [8]. Thus, for example,

for duplicate message suppression the task must be accomplished by the application itself

seeing that the application is most knowledgeable as to how to detect its own duplicate

messages.

Another case in point relates to data encryption. If encryption/decryption was to be

performed by the network, then the network and its data tranmission systems must be trusted

to securely manage the required encryption keys. Also, when data enters the network (to be

encrypted there) the data will be in plaintext and therefore susceptible to theft and attacks.

Finally, the recipient application of the encrypted messaged will still need to verify the source-

authenticity of the message. The application will still need to perform key management. As

such, the best place to perform data encryption/decryption is the application endpoints –
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there is no need for the communication subsystem to provide for automatic encryption of all

traffic. That is, encryption is an end-to-end function.

The end-to-end principle was a fundamental design principle of the security architecture

of the Internet. Among others, it influenced the direction of the subsequent security features

of the Internet, including the the development of the IP-security sublayer [9] and its atten-

dant key management function [10, 11]. Today the entire Virtual Private Network (VPN)

subsegment of the networking industry started based on this end-to-end principle. (The

global VPN market alone is forecasted to reach 70 billion dollars in the next few years). The

current day-to-day usage of the Secure Sockets Layer (TLS) [12] to protect HTTP web-traffic

(i.e. browsers) is also built on the premise that client-server data encryption is an end-to-end

function performed by the browser (client) and by the HTTP server.

2.3 The Autonomous Systems Paradigm

Another key concept in the development of the Internet is that of autonomous systems (or

routing domains) as a connectivity unit that provide scale-up capabilities. The notion of

autonomous systems provides a way to hierarchically aggregate routing information, such

that the distribution of routing information itself becomes a manageable task. This division

into domains provides independence for each domain owner/operator to employ the routing

mechanisms of its choice. IP packet routing inside an autonomous system is therefore referred

to as intra-domain routing, while routing between (across) autonomous systems is referred to

as inter-domain routing. The common goal of many providers of routing services (consumer

ISPs, backbone ISPs and participating corporations) is that of supporting different types of

services (in the sense of speed, latency and reliability).

In the case of intra-domain routing the aim is to share best-route information among

routers using an intra-domain routing protocol (e.g. distance vector such as RIP [13], or

link-state such as OSPF [14]). The routing protocol of choice must address numerous issues,

including possible loops and imbalances in traffic distribution. Today routers are typically

owned and operated by the legal owner of the autonomous system (e.g. ISP or corporation).

These owners then enter into peering agreements with each other in order to achieve end-to-

end reachability of destinations across multiple hops of domains. The primary revenue model

in the ISP industry revolves around different tiers of services appropriate to different groups

of customers.

There are several important points regarding autonomous systems paradigm and the

positive impact this paradigm has had on the development of the Internet for the past four

decades:

• Autonomous systems paradigm leads to scale and reach:

The autonomous system paradigm, the connectionless routing model and the dis-

tributed network topology of the Internet allows each unit (the AS) to solve perfor-

mance issues locally. This in turn promotes service scale in the sense of throughput

(end-to-end) and reach (the large numbers of connected endpoints). As such, it is im-

portant to see the global Internet today a connected set of “islands” of autonomous

system, stitched together through peering agreements.
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Figure 1: Autonomous Systems as a set of networks and gateways (after [4])

• Domain-level control with distributed topology:

Each autonomous system typically possesses multiple routers operating the same intra-

domain routing protocol. The availability of multiple routers implies availability of

multiple routing paths through the domain. Despite this distributed network topology,

these routers are centrally controlled (e.g. by the network administrator of the domain).

The autonomous system as a control-unit provides manageability, visibility and peering

capabilities centrally administered by the owner of the domain.

• Each entity is uniquely identifiable in its domain:

All routers (and other devices, such as bridges and switches) in an autonomous system

are uniquely identifiable and visible to the network operator. This is a precondition

of routing. The identifiability and visibility of devices in a domain is usually limited

to that domain. Entities outside the domain may not even be aware of the existence

individual routers in the domain.

• Autonomous system reachability: Autonomous systems interact with each other through

special kinds of routers (called “Gateways”) that are designed and configured for cross

domain packet routing. These operate specific kinds of protocols (such as an exterior

Border Gateway Protocol [15, 16]), which provides transfer of packets across domains.

For various reasons (including privacy and security) these exterior-facing gateway pro-

tocols advertise only reachability status information regarding routers and hosts in the

domain. They do not make the routing conditions in the domain and other domain

performance/throughput information visible to external entities (i.e. other autonomous

systems). This limited visibility prevents external domains from performing traffic shap-

ing that may adversely impact a given autonomous system (e.g. driving too much traffic

through a given domain).

• Autonomous systems are owned and operated by legal entities:
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All routing autonomous systems (routing domains) today are owned, operated and con-

trolled by known entities. Internet Service Providers (ISPs) provide their Autonomous

System Numbers (ASNs) and routing prefixes to Internet Routing Registries (IRRs).

IRRs can be used by ISPs to develop routing plans. An example of an IRR is the

American Registry for Internet Numbers (ARIN) [17], which is one of several IRRs

around the world.

It is worthwhile pointing out that the pioneers of the Internet understood the importance

of identity, and certainly did not forget it – as is often popularly claimed today by some.

Indeed several groups in the IETF discussed the various issues around digital identity, digital

certificates and PKI (e.g. SPKI [18], X.509 [19], PGP [20]) on an on-going for several years.

It was clear even in the mid-1990s that user (human) identity was a function to be provided

at layers above the IP routing layer and was a construct extraneous to routing packets.

3 Interoperable Blockchains: Towards a Design Philosophy

In this section we use the fundamental goals of the Internet architecture in the context of

interoperable blockchain systems. In the 1980s there was a clear realization that it was

necessary to incorporate the then existing network architectures if Internet was to be useful

in a practical sense. These networks represent administrative boundaries of control [3]. Today

we are seeing a similar situation, in which multiple blockchain designs are being proposed,

each having different degrees of technological maturity.

Different organizations and consortiums (e.g. R3/Corda [21], EEA [22]) are developing

different blockchain technologies. Additionally, several dozen digital currencies are operat-

ing today, and several digital currency exchanges have emerged. A critical aspect of these

proposals is their need to address the fundamental question of privacy of transacting parties.

Some designs (e.g. Hyperledger Fabric [23]) recognize the importance of privacy in trans-

actions, and address these question through a permissioned design. Others are proposing

to retain a permissionless model, but use advanced cryptographic techniques (e.g. zero-

knowledge proofs, homomorphic encryption, etc.) for transaction privacy as a “layer” atop

a permissionless blockchain.

We believe the issue of survivability of blockchain systems to be paramount and a pre-

condition to designing for aspects of privacy. Interoperability is key to survivability. As such,

we believe that interoperability across blockchain systems will be a core requirement – both

at the mechanical level and the value level – if blockchain systems and technologies are to

become the fundamental infrastructure components of future global commerce.

In this section we identify and discuss some of the challenges to blockchain interoperability,

using the Internet architecture as a guide and using the fundamental goals as the basis for

developing a design philosophy for interoperable blockchains. We offer the following definition

of an “interoperable blockchain architecture” using the NIST definition of “blockchain” (p.50

of [24]):

An interoperable blockchain architecture is a composition of distinguishable blockchain

systems, each representing a unique distributed data ledger, where transaction ex-

ecution may span multiple blockchain systems, and where data recorded in one
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Figure 2: Example of the reliability of a simple transaction

blockchain is reachable, verifiable and referenceable by another possibly foreign

transaction in a semantically compatible manner.

3.1 Survivability

The popular idea that a blockchain system can withstand a concerted cyberattack simply be-

cause it consists of physically distributed nodes is an untested and unproven proposition. The

possible types of attacks to a blockchain system has been discussed elsewhere, and consists of

a broad spectrum. These range from classic network-level attacks (e.g. network partitions,

denial of services, DDOS, etc.) to more sophisticated attacks targeting the particular con-

structs (eg. consensus implementation [25, 26, 27]), to targeting specific implementations of

mining nodes (e.g. code vulnerabilities; viruses).

In the Internet architecture, survivability meant that communications must continue de-

spite loss of networks and gateways. In practical engineering terms, this meant the use of the

packet-switching model as a realization of the connectionless routing paradigm. In short, the

connectionless paradigm gave the freedom for each autonomous system (routing domain) to

choose the best-effort delivery path through the domain and to choose the best next peered

domain to which to direct traffic. Additionally, the connectionless paradigm meant that ap-

plications at both end-points of the connection did not need to be aware of routing paths

and that they could continue their high level conversation as soon as the first IP packet was

delivered to the receiving end-point. The idea is that the routing domains will dynamically

reconstitute any failed segment of the end-to-end path from origin to destination.

This connectionless paradigm was in stark contrast to the 100-year old telecommunica-

tions infrastructure that was connection-oriented. In the connection-oriented paradigm, a

fixed path in the telecommunications network must be setup between the caller’s telephone

to the receiver’s telephone before any voice transmission could be carried-out. Once a path

has been created, that path would be retained (fixed) throughout the duration of the call.

Any temporary failure in any segment of the fixed path in the telecommunications network
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resulted in the complete tear-down of the high level conversation. This would then require

the caller to restart the conversation again. Consequently, attacking any one segment of a

connection-oriented communications yielded the desired result (disconnection of the high level

conversation). This weakness of the connection-oriented paradigm was one of the motivating

reasons in the 1960s for interest in packet-switching models of communications [5].

For blockchain systems we re-interpret the term “survivability” in the sense of the com-

pletion of an application-level transaction independent of any specific blockchain autonomous

system (other than the one to which the application is locally connected intra-domain). Com-

pletion here means from its transmission by an end-user application (or by a smart contract on

an origin blockchain) to its confirmation on a single blockchain system or multiple blockchain

systems. The application-level transaction may be composed of multiple ledger-level transac-

tions (sub-transaction) and which may be intended for multiple distinct blockchain systems

(e.g. sub-transaction for asset transfer, simultaneously with sub-transaction for payments

and sub-transaction for taxes). Thus the notion of packets routing through multiple domains

being opaque to the communications application (e.g. email applications, browsers) is re-cast

to the notion of sub-transactions confirmed on a spread of blockchain systems generally being

opaque to the user application.

Thus, the challenge of reliability and “best effort delivery” becomes the challenge of

ensuring that an application-level transaction is completed within reasonable time, possibly

independent of the actual blockchains where different ledger-level sub-transactions are finally

completed and confirmed. Thus, the notion of “connectionless” here becomes one in which in a

two party application-level engagement both parties should not care which specific blockchain

systems confirmed their sub-transactions, so long as all confirmed sub-transactions add up

to a confirmed application-level transaction that satisfies both parties.

To illustrate the challenges of survivability, we start with the simplest case in which an

application sends a “data” transaction (signed hash value) to a blockchain for the purpose

of recording it on the ledger of the blockchain. We ignore for the moment the dichotomy

of permissionless and permissioned blockchains and ignore the specific logic syntax of the

blockchain. Here the application does not care which blockchain records the data so long as

once it is recorded the application (and other entities) can later find the transaction/block

and verify the data has been recorded. Some form of confirmation must be made available

by the blockchain to the transmitting application (e.g. it shows up on a confirmed block).

Figure 2 illustrates the scenario. The application transmits data-bytes (hash) to a

blockchain system No. 1, and waits for confirmation (of the successful recording to the ledger)

to become available. After waiting for some predetermined time unsuccessfully (i.e. time-

out), the application transmits the same data-bytes to a different blockchain system No. 2.

The application continues this process until it is able to obtain the desired confirmation.

Thus for the application “survivability” means that the simple transaction has been success-

fully confirmed on some blockchain (i.e. on all nodes of that ledger), even if soon after the

blockchain ceases being able to process future transactions due to attacks. The side effect

maybe that the same transaction is confirmed independently on multiple blockchain systems,

but the application does not care about this possible side effect so long as “the transaction

got through”.
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Although Figure 2 may appear overly simplistic and inefficient, it brings forth a number of

questions which echo those posed in the early days of the Internet architecture development:

• Application degree of awareness: To what degree must an application be aware of the

internal constructs of a blockchain system in order to interact with it and make use of

the blockchain.

As a point of comparison, an email client application today is not aware of constructs

of packets, MPDUs, routing and so on. It interacts with mail-server according to a

high-level protocol (e.g. POP3, IMAP, SMTP) and a well-defined API.

• Placement of functions dealing with reliability: What is the correct notion of “reliability”

in the context of interoperable blockchain systems and where should the function of

reliability be placed. That is, should the function of re-transmitting the same data-

bytes (transaction) be part of the application, part of the blockchain system or part of

a yet to be defined “middle layer”.

In the case of the Internet architecture, reliability of transmission is provided by the

TCP protocol, which has a number of flow control features that “hides” reliability issues

from the higher level applications.

In the case of blockchain systems, could special types of nodes (e.g. Endorsers in

Fabric [23]) provide a means to express reliability functions in a blockchain system

to which the application’s own reliability function can rely on – including duplicate

transaction suppression at the application. That is, could these special nodes become

the “middle layer” supporting reliability, based on known commitment-protocols (e.g.

2-Phase Commit in classical database systems) that allows the blockchain system to

“pre-commit” (i.e. propose Read/Write sets) to the external application before writing

immutably on its ledger.

• Semantic type of blockchain: What mechanism is needed to communicate to an exter-

nal application the semantic type of the ledger-level transaction supported by a given

blockchain system. For example, a blockchain system for payments is different from one

for recording assets, and furthermore different payments blockchains around the world

may be implemented differently. Merely publishing an application-level API does not

guarantee interoperability at the blockchain ledger level and does not necessarily pro-

vide referenceability of confirmed local transactions by foreign transactions.

• Distinguishability of blockchain systems: For an interoperable blockchain architecture,

how does an application distinguish among blockchain systems (even if they have com-

patible semantics) and at what level should an application be aware. Assuming the

existence of multiple blockchain systems that can serve the need of the application in

Figure 2, how does the application distinguish between these blockchain systems.

• Objective benchmarks for speed and performance: How do external entities obtain in-

formation about the current performance/throughput of a blockchain system and what

measure can be used to compare across systems.
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One of the key considerations in the design of the Internet architecture is the real possibil-

ity in the case of emergencies for private networks to be temporarily placed under government

control for the purposes of government/military communications. The interoperability of net-

works was therefore crucial in answering this need. Similarly, today the question applies to

blockchain systems. In the case of emergencies could independent and/or private blockchain

systems be temporarily placed under government control such that relevant transactions (e.g.

central bank transactions) can continue to flow. The interoperability of blockchain systems

is crucial in answering this future need.

3.2 Variety of service types

The second goal of the Internet architecture was the support for different types of services,

distinguished by different speeds, latency and reliability. The bi-directional reliable data de-

livery model was suitable for a variety of “applications” on the Internet but each application

required different speeds and bandwidth consumptions (e.g. remote login; file transfer, etc).

This understanding led to the realization early in the design of the Internet that more than

one transport service would be needed and that the architecture must support simultane-

ously transports wishing to tailor reliability, delay or bandwidth usage. This resulted in the

separation of TCP (that provided reliable sequenced data stream) from the IP protocol that

provided “best effort” delivery using the common building block of the datagram. The User

Datagram Protocol (UDP) [28] was created to address the need for certain applications that

wished to trade reliability for direct access to the datagram construct.

For interoperable blockchain systems, we re-interpret the goal of supporting a variety of

services to supporting the following variety of transaction aspects: (i) speed and achieved-

majority of confirmation of a given system; (ii) the directionality of transactions; (iii) the

strength of consensus:

• Speed and achieved majority: The speed (or “throughput”) of a blockchain system refers

to the confirmation speed, based on the population size of the participating nodes and

other factors.

• Directionality of ledger-transactions: The directionality refers to whether the transmit-

ting application is acting alone or in a request-response mode of engagement with a

second party (or a group).

– Uni-directional transactions: A transaction is uni-directional if the transmitting

application does not intend it for any specific entity and no response from a peer

application is expected. An example would be a simple asset registry blockchain

which records a hash of the digital scan of certificates (e.g. equity shares, land

deeds, etc).

– Bi-directional transactions: A transaction is bi-directional if the transmitting ap-

plication intends that transaction for a peer application and expects a response-

transaction from that peer.
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Figure 3: Example of peer applications using different variety of blockchains systems

• Strength of consensus: An important consideration for users and applications seeking

to refer to (and therefore rely on) data recorded on a ledger within a blockchain system

is the size of the population of nodes (i.e. entities contributing to the consensus) at

any given moment and whether this information is obtainable. Obtaining this infor-

mation maybe challenging in systems where nodes are either anonymous, or perhaps

unobtainable by external entities in the case of permissioned systems.

In the case of smart contracts, there is also the question regarding the provenance and

source-authenticy of the (externally-sourced) data being used by a smart contract to

compute an outcome.

3.3 Variety of blockchain systems

The third fundamental goal of the Internet architecture was to support a variety of networks,

which included networks employing different transmission technologies (e.g. X.25, SNA,

etc.), local networks and long-haul networks, and networks operated/owned by different legal

entities. The minimum assumption of the Internet architecture – which is core to the success

of the Internet as an interoperable system of networks – was that each network must be able

to transport a datagram as the lowest unit common denominator. Furthermore, this was to

be performed “best effort” – namely with reasonable reliability, but not perfect reliability.

From a blockchain interoperability perspective, one possible re-interpretation of this orig-

inal problem is as follows: how can multiple types of blockchain systems support the com-

pletion of a bi-directional transaction between two applications, involving computational

resources across blockchain systems where some maybe operated (or owned) by different en-

tities and where each uses a different permissions regime. Figure 3 illustrates with a simplistic

example, again aimed at drawing out questions about design.

In Figure 3 applications X and Y are each employing different blockchain systems relating

to currency/payments and asset ownership. Each blockchain system implements a different
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semantic logic and each operates under a different permissioning regime. When application

X seeks to interact with foreign application Y, each may not have sufficient privileges to read

from the permissioned blockchain where their previous transactions have been confirmed.

Thus, when application X wishes to transfer (to Y) asset “ownership” (e.g. land deed)

currently in blockchain system No. 2 (permissioned), application Y has no way to validate the

ownership of the asset. This is because the foreign application Y does not have authorization

to read from the ledger in blockchain system No. 2. This problem is further compounded in

the case of smart contracts that incorporate parts of the business logic of the applications.

As such, this dilemma raises several questions, including one pertaining to the minimum

assumption for interoperable blockchain systems:

• Minimal assumption: What is the minimal assumption for interoperable blockchain

systems with regards to the notion of transaction units. In other words, what is the

“datagram equivalent” of transactions – namely the transaction unit that is semantically

understandable (processable) by multiple different blockchain systems.

• Degrees of permissionability: Currently the permissionless/permissioned distinction

refers to the degree to which users can participate in the system [24]. Interoperability

across permissioned blockchains poses additional questions with regards to how data

recorded on the ledger can be referenced (referred to or “pointed to”) by transactions

in a foreign domain (i.e. another blockchain system).

• Degrees of anonymity: There are at least two (2) degrees of anonymity that is rel-

evant to blockchain systems. The first pertains to the anonymity of end-users (i.e.

identity-anonymity [29, 30, 31, 32]) and the second to that of the nodes participating in

processing transactions (e.g. nodes participating in a given consensus instance). Com-

binations are possible, such as where a permissioned system may require all consensus

nodes to be strongly authenticated and identified, but allows for end-users to remain

permissionless (and even unidentified/unauthenticated).

3.4 Reachability

Peering agreements between autonomous systems on the Internet allows a patchwork of is-

lands of autonomous systems to collectively provide routability of packets from its ingress

point to its destination. Gateway routers (entities labelled G in Figure 1) do not export

full routing information or paths to entities external to the autonomous system. Instead,

gateway routers/devices only provide reachability information regarding local hosts or other

autonomous systems accessible through its domain. This model is partly driven by busi-

ness survivability, where competing ISPs (under a peering agreement) may purposely “push”

(offload) traffic towards competitor ISPs, using traffic shaping tools and algorithms.

A model akin to this gateway approach may be suitable for the interoperability of blockchain

systems. Using the example in Figure 3, the gateways in blockchain system No. 2 (permis-

sioned) can act as a proxy for the permissioned blockchain. When a non-permissioned appli-

cation Y seeks to obtain information regarding confirmed transactions in blockchain No. 2,
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it must present a delegated authorization from application X who has access privileges to

blockchain No. 2. We discuss delegation in Section 4.2.

3.5 Interconnecting Values

The architecture of the Internet was a messaging delivery architecture that separated the

mechanical transmission of packets from the value of the information contained in the packets.

The notion of priority packets was supported, but it was primarily intended for control data

versus content payload data. As such, the notion of value was external to the Internet. Today

this model remains also true for the majority blockchain systems. For example, the Bitcoin

system [33] does not bind the BTC currency denomination to any real-word asset, and a such

the notion of value is an external one (“in the eye of the beholder”).

For specific families of applications, such as currency and financial applications, the ability

to transfer value from one system to another is paramount and indeed the sole purpose of

those applications and systems. Thus for a semantically homogenous or near-homogenous

network of blockchain systems (e.g. payments) the challenges of value-transferral becomes

more manageable.

A promising direction in this respect is the Inter-Ledger Protocol (ILP) proposal [34] which

puts forward a packet format and per-hop transferal protocol to transmit value (payments)

from a sender to a receiver over a network of currency blockchain systems. The end-to-end

behavior of ILP is reminiscent of the Resource Reservation Protocol (RSVP) [35] in which

a bi-directional path is “reserved” from the origin to destination, and where the path needs

to exist only for a short duration of time. To do this the RSVP protocol reserves in/out

interfaces (and other computational resources) at each router per-hop from the origin to

destination.

In the ILP model the sender and receiver of the payment are assumed to be on distinct

blockchain systems. The ILP architecture employs a value connector at the application level

between two blockchain segments. Thus at each hop through the path from sender to receiver

there may be a per-hop connector deployed. The function of the connector entity is to perform

value-conversion from one currency to another. The connector behaves very similarly to a

currency-exchange, and therefore a connector entity must have sufficient reserves of “foreign”

currencies (for each currency it supports) in order to participate in the path being formed

from the sender to the receiver. The connector model also mimics the behavior of routers and

gateways in dealing with overload to their interfaces. In the case of ILP a connector becomes

overloaded when most or all of its pair-wise denominations have been used or “reserved” in

one or more payment paths through that connector. In this case an overloaded connector can

simply reject new requests until some of its open paths have been closed and its resources

(denominations) have become freed-up (settled).

It is important to note that the connectors in ILP represents the value-points which are

external to the blockchain systems involved. That is, the notion of value remains separated

from the transaction mechanics of the underlying blockchain systems.
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3.6 Moveable Smart Contracts for Survivability

For many observers and users today of the nascent blockchain technology, the potentially

revolutionizing aspect of blockchain technology is not so much the immutability of the ledger

but instead the notion of smart contracts, which are invokable executable-code present on the

P2P nodes of the blockchain system [36]. The concept of smart contracts resembles “stored

procedures” (in classic database systems), but in the case of smart contracts they would reside

on many or all nodes of the blockchain. However, in the case of unresponsive or unreachable

blockchain systems (e.g. one under attack and therefore has a degraded throughput), the

resident smart contracts may not be invokable or may not be able to complete/terminate due

to severe resource shortages.

The following are some challenges related to survivability of the smart contracts feature

when a blockchain system is under attack:

• Is there a minimal common syntax for smart contracts that allow a smart contract

to be copied (“moved”) from nodes in one blockchain system to nodes at a different

blockchain system, where execution at the new blockchain system yields identical or

semantically-equivalent output (both in the technical sense and legal sense).

• Should the physical location of the actual execution (i.e. which blockchain system) of

smart contracts be important (or even be opaque) to applications.

• How can an application waiting too long (timing out) for a smart contract in one

blockchain system trigger or initiate the moving (copying or migration) of the smart

contract to a new blockchain system. Should this moving/copying be an automated

process by nodes of a blockchain system when they detect that the system is under

duress from attacks.

• How do nodes in the P2P network of a blockchain system know the system (parts of it

or its entirety) is under direct attack or under other subliminal manipulation.

3.7 Cryptographic Survivability

An important consideration with regards to blockchain-based proposals is the complexity of

the “cryptographic schemes” underlying some proposed blockchain systems. Many crypto-

graphic schemes are composed of multiple cryptographic building blocks. In each scheme

some components maybe well understood, field deployed and even standardized. However,

other components may represent new ideas that have never been field-tested or withstand

theoretical or practical attacks. The point here is that the development of cryptographic

technology is a Darwinian evolutionary process, in which a successful attack on one design

becomes lessons learned for improvements for the next design, and that this Darwinian pro-

cess takes time (years or even decades).

A good case in point is the evolutionary process undergone by symmetric ciphers (block

ciphers) for the past three decades (e.g. DES, 3DES, AES, etc). Symmetric ciphers are a

crucial component not only for national defense cyber-infrastructures, but also of the global
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commercial banking industry. Similarly, weaknesses found in some asymmetric ciphers (e.g.

RSA) often results in recommended key lengths being extended (e.g. NIST SP800-175B).

Today some commercial blockchain systems are proposing to use complex schemes (e.g.

Zero-Knowledge Proofs (ZKP), homomorphic encryption, etc), many of which are untested

large scale in the field and perhaps at research stage at best. It remains to be seen how

attacks on these schemes impact the blockchain systems which employ them.

4 Interoperability Design in Tradecoin

The MIT Tradecoin project [37] has a number of objectives, one core goal being the devel-

opment of a “blueprint” model for interoperable blockchain systems which can be applied

to multiple use cases. Some uses cases which have been identified are: (i) a reserve digital

currency shared by a number of geopolitically diverse small countries, as a means to provide

local financial stability [38]; (ii) a digital currency operating for a narrow-bank that can pro-

vide relative stability during financially volatile periods [39]; (iii) farmers with crop assets

that wish to combine their assets to achieve better market presence; (iv) logistics chains with

many cooperating companies holding assets that will be combined into a final product or

service. As a blueprint, the Tradecoin interoperability model must be independent of any

specific blockchain implementation.

In this section we discuss various aspects of the Tradecoin interoperability model, following

the notion of autonomous systems as developed in the Internet architecture. Attention is

given specifically to cross-domain transactions and the role of “gateways” (special nodes or

computers) that support interoperability across blockchain autonomous systems.

Although this section focuses on the technical aspects of gateways, it is generally under-

stood that interoperability needs to occur both at the technical (mechanical) level and at the

“value” level:

• Mechanical level interoperability: This layer encompasses the computer and network

systems (hardware and software) that implement the technical blockchain constructs

as well as the communications constructs. This layer contains protocols, cryptography,

encryption, signing, identities (identifiers), operational governance rules, consensus al-

gorithms, transactions, probes and so on.

• Value level interoperability: This layer is external to the blockchain system and encom-

passes constructs that accord value as perceived in the human world. Humans, societies,

real assets, fiat currencies, liquidity, legal regimes and regulations all contribute to form

the notion of “value” as attached to (bound to) the constructs (e.g. coins, tokens) that

circulate in the blockchain system, and which are in-turn implemented by systems and

subsystems at the mechanical level. Included also is the notion of legal governance

rules which support humans in making decisions regarding the operations of a given

blockchain as an autonomous system.

We believe this general two-level view is consistent with the end-to-end principle of the

Internet architecture because it places the human semantics (value) and social interactions

16



Figure 4: Tradecoin model: (a) Blockchain as Autonomous System, and (b) Gateways

at the end-points of (i.e. outside) the mechanical systems. Interoperability at the mechanical

level is necessary for interoperability at the value level but does not guarantee it. Human

agreements (i.e. legal contracts) must be used at the value level to provide semantically

compatible meanings to the constructs (e.g. coins, tokens) that circulate in the blockchain

system. Thus, semantic interoperability is required not only at the mechanical level but also

at the value level.

The mechanical level plays a crucial role in providing technological solutions that can

help humans in quantifying risk through the use of a more measurable technical trust [40,

41]. In most cases technical-trust is obtained through a combination of demonstrably strong

cryptographic algorithms, proper key management, tamper-resistant hardware (to a specific

measure of cost) and roots of trust that combine trustworthy computing principles with legal

trust (e.g. contracts that binds the root of trust with legally enforceable obligations and

warranties).

Legal trust is the bridge between the mechanical level and the value level. That is,

technical-trust and legal-trust support business trust (at the value level) by supporting real-

world participants in quantifying and managing risks associated with transactions occurring

at the mechanical level. Standardization of technologies that implement technical trust pro-

motes the standardization of legal contracts – also known as legal trust frameworks – which

in turn reduces the overall business cost of operating autonomous systems.

4.1 The Tradecoin Autonomous System

The Tradecoin model views each blockchain system as being a fully fledged autonomous sys-

tem in the sense of the Internet architecture. The basic design of the blockchain autonomous

system is shown in Figure 4(a). The design consists of entities which operate intra-domain

(e.g. P2P nodes) and entities that operate inter-domain.

• Intra-domain entities: The entities dealing with intra-domain transactions are the peer-

to-peer nodes (N). This includes nodes that participate in consensus computations (e.g.
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full mining nodes in Bitcoin [33]), nodes that “orchestrate” consensus computations

(e.g. Orderers and Endorsers in Fabric [23]), and nodes which perform validations only

(e.g. Validators in Ripple [42]). For simplicity we assume that a blockchain autonomous

system contains only one ledger, and possibly multiple ledgers if they are tightly coupled

with identical semantics and under the same domain.

• Inter-domain entities: The entities dealing specifically with inter-domain transactions

are denoted as Gateways and shown as G in in Figure 4(b). Depending on implementa-

tion, gateways may operate collectively as a group or they may operate loosely-coupled.

The boundary (perimeter) of the autonomous system is largely determined by (i) the de-

gree of identity-anonymity and authentication of the intra-domain entities such as nodes (i.e.

to each other in the same domain); and (ii) degree of permissionability of the blockchain

autonomous system as seen by foreign entities (see Section 3.3). Thus, unlike classical cor-

porate network topologies which define a clear (defensive) physical network perimeter, in

blockchain autonomous systems the “perimeter” is defined by the participation of the en-

tities in an intra-domain arrangement. These intra-domain entities need not necessarily be

located in the same physical proximity, but in some cases may be required to enter into a

legal agreement (e.g. system rules of operation). Depending on the use case, these entities

may be owned by a single organization (e.g. private corporation), or be jointly-owned by a

multiple organizations (e.g. consortium).

In defining permissionability the Tradecoin interoperability model recognizes a number

of permissioning configurations. The first two pertain to the P2P nodes of the blockchain

system, while the remaining two pertain to the end-users and applications:

• Node-permissioned: In this permissioning configuration, nodes must be permissioned to

participate in one or more aspects of the operation of the blockchain system. Using the

Hyperledger Fabric [23] as an example, an instance of a Fabric blockchain may require

all the Orderers and Endorsers nodes to be authenticated and authorized to operate.

• Consensus-permissioned: In this permissioning configuration only the nodes that par-

ticipate directly in consensus algorithm computations need to be authenticated and

authorized.

• User write-permissioned: This permissioning configuration pertains to the end-users

and their applications. In a write-permissioned configuration, the user/application

must be authenticated and authorized to transmit a ledger-modifying transaction to

the blockchain.

• User read-permissioned: In a read-permissioned configuration, the user/application

must be authenticated and authorized to read the contents of the ledger of the blockchain

system.

4.2 The Role of Gateways

The set of gateways G collectively provides at least three (3) types of functional support to

the entities in the blockchain autonomous system:
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Figure 5: Set of Gateways for Reachability and Transaction Mediation

• Value stability: For implementations that exchange value-carrying constructs (e.g. dig-

ital coins, assets), the gateways collectively act to provide stability at the value level.

Thus, for example, in the case of a Narrow Bank scenario [39] which distinguishes

asset-contributing entities (called “sponsors”) from users, each sponsor may own and

operate equal numbers of nodes and gateways within the shared blockchain system.

The gateways may collectively implement an asset-tracking blockchain, while the re-

maining intra-domain nodes implement the local digital currency of the Narrow Bank.

The value-translation between the coins circulating in the currency blockchain (intra-

domain) against other foreign denominations is performed by the gateways, which may

hold a basket of real-world assets (e.g. basket of oil, gold, commodities, greenback, etc)

to back the intra-domain digital currency.

• Reachability: The gateways collectively support reachability to data intra-domain on

ledger of the blockchain. They support cross-domain lookup mechanisms from foreign

entities (e.g. nodes in other blockchains) seeking to locate data pertaining to transac-

tions confirmed on the local ledger. That is, the gateways provide reachability so that

internal confirmed transaction can be meaningfully referenced outside the blockchain

system.

• Transaction mediation: The gateways provide a mediation function for cross-domain

transactions involving two or more (permissioned) blockchain systems, where transac-

tion data in ledgers may be considered as private and sensitive information.
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4.3 Reachability

An interoperable architecture for blockchain systems must allow not only for entities to be

uniquely identifiable and authenticated, but also for transactions on the ledger to be uniquely

referenceable across domains regardless of permissioning configurations:

• Endpoint identifier resolutions: Gateways provide a perimeter/boundary for permis-

sioned blockchain systems for the purposes of naming/identifier resolution (i.e. names-

pace management). Thus when a transaction-identifier is externally referenced and

resolved to a ledger-entry inside a permissioned blockchain system, the gateways “in-

tercept” that resolution request and act as (defensive) end-points for these external

requests.

• Identifier masking for data privacy: Gateways provide “masking” (re-naming) of trans-

action identifiers in local ledgers inside the blockchain autonomous system. This may

involve mapping different identifiers for the same transaction data, where one identifier

is used for intra-domain referencing and another is used for cross-domain referenc-

ing. The gateways also play a role in filtering information leaving the boundary of a

blockchain system, limiting privacy leakage.

Note that this mapping idea itself is not new and is deployed today at a global scale in

Internet addressing (e.g. IPv4/IPv6 address mapping, NAT address traversal [43]).

• Identifier referencing and de-referencing service: Gateways may collectively implement

a transaction-identifier resolution service, in a similar sense to the hierarchical arrange-

ment of the Domain Name Service (DNS and DNSSEC) [44, 45].

With regards to addressability, one promising approach is that of the Inter-Ledger Pro-

tocol [34] (v1.0.0) which proposes the use of an addressing scheme that allows ledgers and

nested-ledgers to be identified, and which proposes a global allocation scheme for these ad-

dresses.

4.4 Inter-Domain Transaction Mediation

Gateways in a blockchain autonomous system may collectively provide a mechanism to proac-

tively mediate cross-domain transactions involving two blockchain systems as distinct au-

tonomous systems. The gateways in the respective systems must interact to facilitate the

atomic and correct recording of cross-ledger transactions.

Figure 5 illustrates the simple use-case discussed earlier. Here, a user with Application X

has his or her asset-ownership (e.g. land title deed) recorded on the ledger inside blockchain

BC1. The user wishes to transfer legal ownership of the asset to a different user running

Application Y, and to have the asset recoded authoritatively on the ledger inside blockchain

BC2. Both blockchain BC1 and BC2 are permissioned/private blockchain systems. Thus,

none of the gateways in BC1 can directly read/write to BC2, and none of the gateways in

BC2 can directly read/write to BC1.

The term “authoritative” here means that (i) henceforth any external de-referencing of

the asset identifier must resolve to blockchain BC2; and (ii) the ledger in BC1 must be
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“marked” for that asset such that it henceforth points to BC2 for any local look-ups for that

asset transaction data.

The Tradecoin interoperability model proposes the use of the classical cross-domain del-

egation paradigm that is well-established in several sectors of industry (e.g. cross-domain

directory services [46, 47, 48]). Without going into details, in Figure 5 the set of gateways

in BC1 and BC2 respectively act as delegates to the users/applications involved. Thus, the

entities intra-domain within BC1 and BC2 must trust their gateways to create a temporary

bridge that allows their gateways to be synchronized temporarily until both ledgers (in BC1

and BC2 respectively) have completed recording the asset-transfer transaction.

Since blockchains BC1 and BC2 are permissioned and one side cannot see the ledger at

the other side, the gateways of each blockchain must “vouch” that the transaction have been

confirmed on the respective ledgers. That is, the gateways must issue legally-binding signed

assertions that makes them liable for misreporting (intentionally or otherwise). The signature

can be issued by one gateway only, or it can be a collective group signature of all gateways

in the blockchain system. Various cryptographic schemes have been proposed over the past

two decades around group-oriented signatures [49]. Each of these gateway signatures must

also be recorded on the respective ledgers.

There are several desirable features of the gateway-mediated approach outline above:

• Verifiability of local confirmations: Both the transmitter and recipient applications must

be able to independently verify that the transaction was confirmed on their respective

blockchains, with sufficient data to allow post-event auditing.

• Legally binding signatures of gateways: Delegated gateways must have signatures that

are binding, independent of how the gateway(s) was chosen to be the delegate for

the given cross-domain transaction. Thus, part of the peering agreement between two

blockchains autonomous systems must include legal contracts covering digital signatures

from their respective gateways.

• Multiple delegation paths: There must be multiple reliable “paths” (i.e. set of respective

gateways) between blockchains BC1 and BC2. Thus, looking at Figure 5 there must be

multiple paths from BC1 and BC2, and from BC2 to BC1. Any gateway in BC1 must

be able to “pair” with any gateway in BC2.

The gateways themselves must never become a hindrance to completing the a cross-

domain transaction. Attacking gateways must not yield better results (to the attacker)

compared to attacking the P2P nodes intra-domain in the blockchain system.

• Global resolution to the correct authoritative blockchain: Any external entities seeking

to lookup/resolve an identifier (e.g. linked to the asset) must always resolve to the

correct authoritative blockchain system. In order words, in Figure 5 after the cross-

domain transaction has completed, subsequent lookups of the asset must always resolve

to BC2 (or the gateways of BC2).

• Identifiability and authenticity of gateways: In order for gateways to act as a delegate for

the user/application, they must be identifiable (i.e. non-anonymous) both internally
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(intra-domain) and externally (inter-domain). Gateways must be able to mutually

authenticate each other without any ambiguity as to their identity, legal ownership or

the “home” blockchain autonomous system which they exclusively represent.

4.5 Peering Agreements for Blockchain Systems

A key aspect in the Internet architecture that promotes and expands the interconnectivity of

the autonomous systems is the peering agreements between these systems. In the context of IP

routing, peering is voluntary and occurs typically between Internet Service Providers (ISPs).

The peering agreements are contracts that define the various interconnection mechanical

aspects (e.g. traffic bandwidth, protocols, etc) as well as fees (“settlements”) and possible

penalties. Peering is made possible by the standardization of cross-domain routing protocols

(e.g. BGP [15])

Historically, a peering arrangement can be considered “public” in the sense that there is

a “group contract” among a group of ISPs that allow any group-member to transit traffic

through another member. Peering agreements can also be “private” in that it is entered into

by two ISPs, providing mutually better service levels to both parties. Peering agreements

provides the ISPs with the correct incentive structure for them to operate their autonomous

system as a business.

For the interoperability of blockchain systems, a notion similar to peering and peering-

agreements must be developed that: (i) define the semantic compatibility required for two

blockchains to exchange cross-domain transactions; (ii) specifies the cross-domain protocols

required; (iii) specifies the delegation and technical-trust mechanisms to be used; and (iv)

define the legal agreements (e.g. service levels, fees, penalties, liabilities, warranties) for

peering.

It is important to note that in the Tradecoin interoperability model, the gateways of

a blockchain system represents the peering-points of the system. The peering agreement

can be established either with another blockchain system (private bilateral), with a group

of blockchain systems (private multi-lateral), or with an open “exchange” system (public

peering).

5 Discussion: Survivable Digital Currency and CBDC

Several governments around the world have recently indicated their interest in using digital

currency technology as the basis for a future reserve currency, also referred to as Central Bank

Digital Currency (CBDC) or Sovereign Money [50]. Some examples include Switzerland [51],

China [52] and Russia [53].

Although digital currencies may enhance economic strengths of certain nations, the move

to a digital currency comes with its own set of challenges. As nations increasingly rely on

digital infrastructures, those infrastructures – if not designed and operated correctly – may

bring a different set of liabilities.

In this section we pose a number of questions concerning the survivability of digital curren-

cies and CBDCs, particularly in the face future sophisticated cyber-attacks on the monetary
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electronic infrastructure. Instead of focusing on the survival of one blockchain system, we dis-

cuss communities of blockchain autonomous systems as the basic unit of concern, recognizing

that there will be many communities with varying sizes, technical capabilities and varying

instruments of value.

• Independence of communities of blockchain systems: Assuming that blockchain systems

deployments evolve organically in a similar manner to the Internet, what would be the

most useful composition of “communities” of blockchain autonomous systems from the

point of view of currency survivability? A key aspect is the ability of a community to

continue functioning economically while the monetary flows into (out of) that commu-

nity are temporarily disrupted.

Today the Internet operates not only at the level of local ISPs, but also across long-haul

physical networks coast to coast, and overseas. Connectivity of the Internet within the

US and Canada will most likely continue to operate even if overseas connectivity was

lost. Similarly, loss of coast to coast IP connectivity will still allow local ISPs to offer

services to its local physically connected communities. Multiple reliable IP traffic paths

coast to coast ensures that disruptions from attacks have minimal effects.

• Survivable peering models: What kinds of peering agreements need to be developed

for blockchain autonomous systems within a community to enhance the operational

survival chances of that community. Furthermore, should super-peering agreements

be developed for cross-community engagements that come into effect in emergency

situations.

• Self-protecting blockchain autonomous systems: How can advanced artificial intelligence

(AI) and machine learning (ML) technologies be used to enhance the protection of

communities of blockchain autonomous systems? Distributed AI/ML tools can be used

to analyze community behaviors on the transactional level and provide insight into

anomalies that may indicate unauthorized attempts to alter or influence monetary flows

within a given community. The predictive capabilities of these tools could be used to

support the enhanced shaping of monetary-flows in anticipation of emergent attacks.

• Cross-community recovery from attacks: How can communities of blockchain autonomous

systems re-establish transactional connectivity automatically and organically (at the

mechanical-level and value-level) after they have experienced “isolation” due to suc-

cessful attacks? Furthermore, how can “old infrastructure” (e.g. transactional systems,

interbank networks, paper cash, etc) be used to boot-up communities into a stable state

(preferably into the same pre-attack state).

6 Conclusions

The fundamental goals underlying the Internet architecture has played a key role in determin-

ing the interoperability of the various networks and service types, which together compose
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the Internet as we know it today. Interoperability is key to survivability. A number of de-

sign principles emerged from the evolution of internet routing in the 1970s and 1980s, which

ensured the scalable operation of the Internet over the last three decades.

We believe that a similar design philosophy is needed for interoperable blockchain systems.

The recognition that a blockchain system is an autonomous system is an important start-

ing point that allows notions such as reachability, referencing of transaction data in ledgers,

scalability and other aspects to be understood more meaningfully – beyond the current notion

of throughput (“scale”), which is often the sole measure of performance used with regards to

many blockchain systems today.

Furthermore, interoperability forces a deeper re-thinking into how permissioned and per-

missionless blockchain systems can interoperate without a third party (such as an exchange).

A key aspect is the semantic interoperability at the value level and at the mechanical level.

Interoperability at the mechanical level is necessary for interoperability at the value level but

does not guarantee it. The mechanical level plays a crucial role in providing technological

solutions that can help humans in quantifying risk through the use of a more measurable

notion of technical-trust. Human agreements (i.e. legal contracts) must be used at the value

level to provide semantically compatible meanings to the constructs (e.g. coins, tokens) that

circulate in the blockchain system.
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