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ABSTRACT

The concept of a blockchain was invented by Satoshi Nakamoto to

maintain a distributed ledger. In addition to its security, important

performance measures of a blockchain protocol are its transaction

throughput and confirmation latency. In a decentralized setting,

these measures are limited by two underlying physical network

attributes: communication capacity and speed-of-light propaga-

tion delay. In this work we introduce Prism, a new proof-of-work

blockchain protocol, which can achieve 1) security against up to

50% adversarial hashing power; 2) optimal throughput up to the

capacityC of the network; 3) confirmation latency for honest trans-

actions proportional to the propagation delay D, with confirmation

error probability exponentially small in the bandwidth-delay prod-

uctCD; 4) eventual total ordering of all transactions. Our approach
to the design of this protocol is based on deconstructing Nakamoto’s

blockchain into its basic functionalities and systematically scaling

up these functionalities to approach their physical limits.

1 INTRODUCTION

In 2008, Satoshi Nakamoto invented the concept of a blockchain,

a mechanism to maintain a distributed ledger in a permissionless

setting. Honest nodes mine blocks on top of each other by solving

Proof-of-Work (PoW) cryptographic puzzles; by following a longest

chain protocol, they can come to consensus on a transaction ledger

that is difficult for an adversary to alter. Since then, many other

blockchain protocols have been invented.

1.1 Performance measures

The fundamental performance measures of a PoW blockchain pro-

tocol are:

(1) the fraction β of hashing power the adversary can control with-

out compromising system security, assuming the rest of the

nodes follow protocol;

(2) the throughput λ, number of transactions confirmed per second;

(3) the confirmation latency, τ , in seconds, for a given probability

ε that a confirmed transaction will be removed from the ledger

in the future.

For example, Bitcoin is secure against an adversary holding up to

50% of the total network hash power (β = 0.5), has throughput λ
of a few transactions per seconds and confirmation latency of the

order of tens of minutes to hours. There is a tradeoff between the

confirmation latency and the confirmation error probability: the

smaller the desired confirmation error probability, the longer the

needed latency is in Bitcoin. For example, Nakamoto’s calculations

[16] show that for β = 0.3, while it takes a latency of 6 blocks (on

the average, 60 minutes) to achieve an error probability of 0.15, it

takes a latency of 30 blocks (on the average, 300 minutes) to achieve

an error probability of 10
−4
.

1.2 Physical limits

Bitcoin has strong security guarantees but its throughput and la-

tency performance are poor. In the past decade, much effort has

been expended to improve the performance in these metrics. But

what are the fundamental bounds that limit the performance of any
blockchain protocol?

Blockchains are protocols that run on a distributed set of nodes

connected by a physical network. As such, their performance is

limited by the attributes of the underlying network. The two most

important attributes are C , the communication capacity of the net-

work, and D, the speed-of-light propagation delay across the net-

work. Propagation delay D is measured in seconds and the capacity

C is measured in transactions per second. Nodes participating in a

blockchain network need to communicate information with each

other to reach consensus; the capacity C and the propagation de-

lay D limit the rate and speed at which such information can be

communicated. These parameters encapsulate the effects of both

fundamental network properties (e.g., hardware, topology), as well

as resources consumed by the network’s relaying mechanism, such

as validity checking of transactions or blocks.
1
Assuming that

each transaction needs to be communicated at least once across the

network, it holds that λ, the number of transactions which can be

confirmed per second, is at most C , i.e.

λ < C . (1)

One obvious constraint on the confirmation latency τ is that

τ > D. (2)

Another less obvious constraint on the confirmation latency comes

from the network capacity and the reliability requirement ε . Indeed,
if the confirmation latency is τ and the block size is Bv transactions,

then at most C/Bv · τ mined blocks can be communicated across

1
We define confirmation formally in Section 2, but informally, we say a node ε -confirms

a transaction if, upon successfully evaluating a confirmation rule under parameter ε ,
the transaction has a probability of at most ε of being reverted by any adversary.
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the network during the confirmation period for a given transaction.

These mined blocks can be interpreted as confirmation votes for a
particular transaction during this period; i.e. votes are communi-

cated at rateC/Bv andCτ/Bv votes are accumulated over duration

τ . (The parameter Bv can be interpreted as the minimum block

size to convey a vote.) On average, a fraction β < 0.5 of these

blocks are adversarial, but due to the randomness in the mining

process, there is a probability, exponentially small in Cτ/Bv , that
there are more adversarial blocks than honest blocks; if this hap-

pens, confirmation cannot be guaranteed. Hence, this probability

is a lower bound on the achievable confirmation error probability,

i.e. ε = exp(−O(Cτ/Bv )). Turning this equation around, we have

the following lower bound on the latency for a given confirmation

probability ε :

τ = Ω

(
Bv
C
· log

1

ε

)
. (3)

Comparing the two constraints, we see that if

CD

Bv
≫ log

1

ε
,

the latency is limited by the propagation delay; otherwise, it is

limited by the confirmation reliability requirement. The quantity

CD/Bv is analogous to the key notion of bandwidth-delay product
in networking (see eg. [10]); it is the number of “in-flight" votes in

the network.

To evaluate existing blockchain systems with respect to these

limits, consider a global network with communication links of

capacity 20 Mbits/second and speed-of-light propagation delay D
of 1 second. If we take a vote block of size 100 bytes, then the

bandwidth-delay product CD/Bv = 25000 is very large. Hence,

the confirmation latency is limited by the propagation delay of 1

seconds, but not by the confirmation reliability requirement unless

it is astronomically small. Real-world blockchains operate far from

these physical network limits.Bitcoin, for example, has λ of the order
of 10 transactions per second, τ of the order of minutes to hours,

and is limited by the confirmation reliability requirement rather

than the propagation delay. Ethereum has λ ≈ 15 transactions per

second and τ ≈ 3 minutes to achieve an error probability of 0.04

for β = 0.3 [4].

1.3 Main contribution

The main contribution of this work is a new blockchain protocol,

Prism, which, in the face of any powerful adversary
2
with power

β < 0.5, can simultaneously achieve:

(1) Security: (Theorem 4.3) a total ordering of the transactions,

with consistency and liveness guarantees.

(2) Throughput: (Theorem 4.4) a throughput

λ = 0.9(1 − β)C transactions per second. (4)

(3) Latency: (Theorem 4.8) confirmation of all honest transactions

(without public double spends) with an expected latency of

E[τ ] < max

{
c1(β)D, c2(β)

Bv
C

log

1

ε

}
seconds, (5)

with confirmation reliability at least 1−ε (Figure 1). Here, c1(β)
and c2(β) are constants depending only on β

2
The powerful adversary will be precisely defined in the formal model.
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Figure 1: Confirmation latency vs. security parameter for

Prism . The latency of Prism is independent of the security pa-

rameter value up to order CD/Bv and increases very slowly

after that (with slope Bv/C). For Bitcoin , latency increases

much more rapidly with the security parameter, with slope

proportional to D. (Since CD/Bv ≫ 1, this latter slope is

much larger.)

Notice that the worst-case optimal throughput of any protocol

with 1 − β fraction of hash power is (1 − β)C transactions/second,

assuming each transaction needs to be communicated across the

network. Hence, Prism’s throughput is near-optimal. At the same

time, Prism achieves a confirmation latency for honest transactions

matching the two physical limits (2) and (3). In particular, if the de-

sired security parameter log
1

ε ≪ CD/Bv , the confirmation latency

is of the order of the propagation delay and independent of log 1/ε .
Put another way, one can achieve latency close to the propagation

delay with a confirmation error probability exponentially small

in the bandwidth-delay product CD/Bv . Note that the latency is

worst-case over all adversarial strategies but averaged over the

randomness in the mining process.

To the best of our knowledge, no other existing PoW protocol has

guaranteed performance which can match that of Prism. Two novel

ideas which enable this performance are 1) a total decoupling of

transaction proposing, validation and confirmation functionalities

in the blockchain, allowing performance scaling; 2) the concept of

confirming a list of possible ledgers rather than a unique ledger,

enabling honest non-double-spend transactions to be confirmed

quickly
3
.

1.4 Performance of existing PoW protocols

High forking protocols. Increasing the mining rate in Bitcoin

can decrease latency and improve throughput, however, this comes

at the expense of decreased security [25]. Thus, unlike Prism, the

throughput and latency of Bitcoin is security-limited rather than

communication-limited. To increase the mining rate while maintain-

ing security, one line of work (GHOST [25], Inclusive [14], Spectre

[23], Phantom [24], Conflux [15]) in the literature has used more

complex fork choice rules and added reference links to convert the

blocktree into a directed acyclic graph (DAG). This allows blocks

to be voted on by blocks that are not necessarily its descendants.

3
This idea was inspired by the concept of list decoding from information theory.

2



Deconstructing Blockchain

Decoupling Transactions Decoupling Voting
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Figure 2: Deconstructing the blockchain into transaction

blocks, partially ordered proposal blocks arranged by level,

and voter blocks organized in a voter tree. The main chain

is selected through voter blocks, which vote among the pro-

posal blocks at each level to select a leader block. For exam-

ple, at level 3, block b is elected the leader over block a.

While GHOST remains secure at low mining rates[11], there is

a balancing attack by the adversary [12, 17], which severely limits

the security at high mining rates. Thus, like Bitcoin, the throughput

of GHOST is security-limited. The other protocols Inclusive and

Conflux that rely on GHOST inherit this drawback. While Spectre

and Phantom improve latency and throughput, Spectre cannot pro-

vide a total order on all transactions (required for smart contracts)

and Phantom does not yet have a formal proof of security.

Decoupled consensus. Protocols such as BitcoinNG [7] decou-

ple transaction proposal and leader election (which are coupled

together in Bitcoin). BitcoinNG elects a single leader to propose

many transaction blocks till the next leader is elected by PoW.While

this achieves high throughput, the latency cannot be reduced using

this approach. Furthermore, BitcoinNG is vulnerable to bribery

or DDoS attacks, whereby an adversary can corrupt a leader af-

ter learning its identity (unlike Bitcoin). Subchains [22] and weak

blocks [3, 26] both employ blocks with lower hash threshold (“weak

blocks”) along with regular blocks in an attempt to scale through-

put. However, since weak blocks are required to form a chain, it

does not achieve the optimal throughput.

Hybrid blockchain-BFT consensus. Several protocols combine

ideas from Byzantine fault tolerant (BFT) based consensus into a

PoW setting [1, 13, 20, 21]. ByzCoin [13] and its predecessor Disc-

Coin [6] attempt to address the latency shortcoming of BitcoinNG

but is proven in a later paper [20] to be insecure when the ad-

versarial fraction β > 0.25. Hybrid consensus uses a combination

of proof-of-work based committee selection with Byzantine fault

tolerance (BFT) consensus [20]. However, this protocol is secure

only till β = 0.33. While the protocol latency is responsive, i.e., it

decreases with network delay linearly, for a known network delay,

it has similar non-optimal dependence on ε as Bitcoin.
A closely-related protocol called Thunderella [21] achieves very

low latency under optimistic conditions, i.e., when the leader is hon-

est and β < 0.25. However even when β is very small, a dishonest

leader can keep delaying transactions to the Bitcoin latency (since

such delaying behavior is detected by a slow PoW blockchain).

L

L

L

L

Proposer block

Transaction block

Leader blockL

Voter block

Parent Link

Reference Link

Chain 1 Chain 2 Chain 𝑚

Figure 3: Prism. Throughput, latency and reliability are

scaled to the physical limits by increasing the number of

transaction blocks and the number of parallel voting chains.

1.5 Our Approach

Increasing the mining rate is critical to improving the throughput

and latency of blockchain protocols. The challenges facing the DAG

approaches arise from the fact that the DAG is unstructured, due to
the excessive random forking when the mining rate is increased.

In contrast, Prism is based on a structured DAG created by crypto-

graphic sortition of the mined blocks into different types of different

functionalities and scaling these functionalities separately.

Deconstruction. We start by deconstructing the basic blockchain

structure into its atomic functionalities, illustrated in Figure 2. The

selection of a main chain in a blockchain protocol (e.g., the longest

chain in Bitcoin) can be viewed as electing a leader block among

all the blocks at each level of the blocktree, where the level of

a block is defined as its distance (in number of blocks) from the

genesis block. Blocks in a blockchain then serve three purposes:

they stand for election to be leaders, they add transactions to the

main chain, and they vote for ancestor blocks through parent link

relationships. We explicitly separate these three functionalities

by representing the blocktree in a conceptually equivalent form

(Figure 3). In this representation, blocks are divided into three

types: proposer blocks, transaction blocks and voter blocks. The

voter blocks vote for transactions indirectly by voting for proposer

blocks, which in turn link to transaction blocks . Proposer blocks

are grouped according to their level in the original blocktree, and

each voter block votes among the proposer blocks at the same level

to select a leader block among them. The elected leader blocks can

then bring in the transactions to form the final ledger. The valid

voter blocks are the ones in the longest chain of the voter tree, and

this longest chain maintains the security of the whole system.

Scaling.This alternative representation of the traditional blockchain,

although seemingly more complex than the original blockchain

representation, provides a natural path for scaling performance

to approach physical limits (Figure 3). To increase the transaction

throughput, one can simply increase the number of transaction

blocks that a proposer block points to without compromising the

security of the blockchain. This number is limited only by the phys-

ical capacity of the underlying communication network. To provide

fast confirmation, one can increase the number of parallel voting

trees, voting on the proposal blocks in parallel to increase the voting

rate, until reaching the physical limit of confirming with speed-of-

light latency and extremely high reliability. Note that even though

the overall block generation rate has increased tremendously, the

3



number of proposal blocks per level remains small and manage-

able, and the voting blocks are organized into many separate voting

chains with low block mining rate per chain and hence little forking.

The overall structure, comprising of the different types of blocks

and the links between them, is a structured DAG.

Sortition. The sortition of blocks into the three types of blocks, and

further into blocks of different voting trees, can be accomplished by

using the random hash value when a block is successfully mined.

This sortition splits the adversary power equally across the struc-

tures and does not allow it to focus its power to attack specific

structures. This sortition is similar to the 2-for-1 PoW technique

used in [9], which is also used in Fruitchains [19] for the purpose

of providing fairness in rewards. In fact, the principle of decoupling
functionalities of the blockchain, central to our approach, has al-

ready been applied in Fruitchains, as well as other works such as

BitcoinNG. The focus of these works is only on decoupling the

transactions-carrying functionality. In our work, we broaden this

principle to decouple all functionalities. Concurrent work. We

were made aware of two independent but related works [8, 27]

which appeared after we posted this work online. [8] proposes two

protocols, one achieves high throughput O(C) but Bitcoin latency,

and the other achieves low latency O(1/
√
C) but low throughput

O(1). In contrast, Prism achieves simultaneously high throughput

O(C) and even lower latency O(1/C). Although [8] also uses the

concept of multiple chains, the key difference with Prism is that

there is no decoupling: the blocks in each chain both carry trans-

actions and vote. Thus, either different transactions are put on the

different chains to increase throughput, but the voting rate is low

and hence the latency is poor, or the same transaction is repeated

across all the chains to increase the voting rate, but the throughput

is poor. In contrast, Prism decouples blocks into transaction blocks

and voter blocks, tied together through proposer blocks, and allo-

cate a fraction of the network capacity to each to deliver both low

latency and high throughput. The protocol in [27] is similar to first

one in [8], achieving high throughput but only Bitcoin latency.

1.6 Outline of paper

Section 2 presents our model. It is a combination of the synchronous

model used in [9] and a network model that ties the blockchain

parameters to physical parameters of the underlying network. In

Section 3, we give a pseudocode description of Prism. The analysis

of the security, throughput and latency of Prism is presented in

Section 4, with details of the proofs in the appendices. Section 5

contains simulation results.

2 MODEL

We consider a synchronous, round-based network model similar

to that of Garay et al. [9]. We define a blockchain protocol as a

pair (Π,д), where Π is an algorithm that maintains a blockchain

data structure C consisting of a set of blocks. The function д(tx,C)
encodes a ledger inclusion rule; it takes in a transaction tx and a

blockchain C, and outputs д(tx,C) = 1 if tx is contained in the

ledger defined by blockchain C and 0 otherwise. For example, in

Bitcoin, д(tx,C) = 1 iff tx appears in any block on the longest chain.

If there are multiple longest chains, д can resolve ties deterministi-

cally, e.g., by taking the chain with the smallest hash value.

The blockchain protocol proceeds in rounds of ∆ seconds each.

Letting κ denote a security parameter, the environment Z(1κ ) cap-
tures all aspects external to the protocol itself, such as inputs to the

protocol (i.e., new transactions) or interaction with outputs.

Let N denote the set of participating nodes. The set of honest
nodesH ⊂ N strictly follow the blockchain protocol (Π, f ). Cor-
rupt nodesN \H are collectively controlled by an adversarial party

A. Both honest and corrupt nodes interact with a random function

H : {0, 1}∗ → {0, 1}κ through an oracle H(x), which outputs H (x).
In each round, each node n ∈ N is allowed to query the oracle H(·)
at most q times. The adversary’s corrupt nodes are collectively al-

lowed up to βq |N | sequential queries to oracle H(·), where β < 0.5

denotes the fraction of adversarial hash power, i.e., 1 − |H ||N | = β .4

Like [9], the environment is not allowed to access the oracle. These

restrictions model the limited hash rate in the system.

In an execution of the blockchain protocol, the environmentZ
first initializes all nodes as either honest or corrupt; like [9], once

the nodes are initialized, the environment can adaptively change

the set H between rounds, as long as the adversary’s total hash

power remains bounded by β . Thereafter, the protocol proceeds
in rounds. In each round, the environment first delivers inputs to

the appropriate nodes (e.g., new transactions), and the adversary

delivers any messages to be delivered in the current round. Here,

delivery means that the message appears on the recipient node’s

input tape. Nodes incorporate the inputs and any messages (e.g.,

new blocks) into their local blockchain data structure according to

protocol Π. The nodes then access the random oracle H(·) as many

times as their hash power allocation allows. Hence, in each round,

users call the oracle H(·) with different nonces s in an attempt to

find a valid proof of work. If an oracle call produces a proof of work,

then the node can deliver a new block to the environment. Note

that the computational constraints on calling oracle H(·) include
block validation. Since each block only needs to be validated once,

validation represents a small fraction of computational demands.

Since each node is allowed a finite number of calls toH(x) in each
round, the number of blocks mined per round is a Binomial random

variable. To simplify the analysis, we consider a limit of our model

as the number of nodes |N | → ∞. As |N | grows, the proof-of-work
threshold adjusts such that the expected number of blocks mined

per round remains constant. Hence, by the Poisson limit theorem,

the number of voter blocks mined per round converges to a Poisson

random variable.

All messages broadcast to the environment are delivered by the

adversary. The adversary has various capabilities and restrictions.

(1) Any message broadcast by an honest node in the previous round

must be delivered by the adversary at the beginning of the current

round to all remaining honest nodes. However, during delivery,

the adversary can present these messages to each honest node in

whatever order it chooses. (2) The adversary cannot forge or alter

any message sent by an honest node. (3) The adversary can control

the actions of corrupt nodes. For example, the adversary can choose

how corrupt nodes allocate their hash power, decide block content,

and release mined blocks. Notably, although honest blocks publish

mined blocks immediately, the adversary may choose to keep blocks

4β for bad. Like [9], we have assumed all nodes have the same hash power, but this

model can easily be generalized to arbitrary hash power distributions.
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they mined private and release in future round. (4) The adversary

can deliver corrupt nodes’ messages to some honest nodes in one

round, and the remaining honest nodes in the next round. We

consider a “rushing” adversary that observes the honest nodes’

actions before taking its own action for a given round. Notice that

we do not model rational users who are not necessarily adversarial

but nevertheless may have incentives to deviate from protocol.

Physical Network Constraints. To connect to the physical param-

eters of the network, we assume a simple network model. Let B be

the size of a block, in units of number of transactions. The network

delay ∆ (in seconds) is given by:

∆ =
B

C
+ D (6)

i.e. there is a processing delay of B/C followed by a propagation

delay of D seconds. This is the same model used in [25], based on

empirical data in [5], as well in [22]. Notice that the network delay

∆ is by definition equal to the duration of a single round.

In practice, networks cannot transport an infinite number of

messages at once. We model this by allowing the environment to

transport only a finite volume of messages per round. This vol-

ume is parametrized by the network capacity C , measured in units

of transactions per second. Hence, during each round, the envi-

ronment can process a message volume equivalent to at most ∆C
transactions. This puts a constraint on the number of blocks mined

per unit time in any protocol. This stability constraint differenti-
ates our model from prior work, which has traditionally assumed

infinite network capacity; in particular, this gives us a foothold for

quantifying physical limits on throughput and latency.

For simplicity, we assume that the dissemination of new transac-

tions consumes no bandwidth. Instead, the cost of communicating

transaction messages is captured when the environment transmits

blocks carrying transactions. In other words, we assume that the

cost of transmitting transactions is counted only once.

Metrics. We let random variable VIEWΠ,A,Z denote the joint

view of all parties over all rounds; here we have suppressed the

dependency on security parameter κ. The randomness is defined

over the choice of function H (·), as well as any randomness in the

adversary A or environment Z. Our goal is to reason about the

joint view for all possible adversaries A and environmentsZ. In

particular, we want to study the evolution of Cri , or the blockchain
of each honest node i ∈ H during round r . Following the Bitcoin
backbone protocol model [9], we consider protocols that execute

for a finite execution horizon rmax, polynomial in κ. Our primary

concern will be the efficiency of confirming transactions.

Definition 2.1. We say a transaction tx is (ε,A,Z, r0,κ)-cleared
iff under an adversary A, environmentZ, and security parameter κ,

PVIEWΠ,A,Z

©­­­«
⋂

r ∈{r0, ...,rmax }
i ∈H

{
д(tx,Cri ) = b

}ª®®®¬ ≥ 1 − ε − negl(κ),

where b ∈ {0, 1}; b = 1 corresponds to confirming the transactions
and b = 0 corresponds to rejecting the transaction.

That is, a transaction is considered confirmed (resp. rejected) if

all honest party will include (resp. exclude) it from the ledger with

GG

Proposer blocktree Voter blocktree 𝑖 Proposer block

Voter block

Voter block mined
Votes

Proposer block mined

𝑝#$%		 Reference Link

Transaction block

Trans. block mined

Parent blocks

𝑣(

𝑝)

𝑣#$%(

Figure 4: Snapshot of a miner’s blocktree: The previously

mined blocks have solid boundary whereas blocks which

are being mined have dotted-boundary. A miner simultane-

ously mines on p1, parent on proposer blocktree, vi , parent
on voter block blocktree i(∀i ∈ [m]).

probability more than ε plus a term negligible in κ resulting from

hash collisions, which we ignore in our analysis. We suppress the

notation κ from here on.

Our objective is to optimize two properties of a blockchain pro-

tocol: the throughput and latency of confirming transactions. We

let |S | denote the number of elements in set S . We let T denote the

set of all transactions generated during the execution horizon, and

T r
denote all transactions delivered up to and including round r .

Definition 2.2 (Throughput). We say a blockchain protocol
Π supports a throughput of λ transactions per round if there exists
Uε ,linear in log(1/ε), such that for all environmentsZ that produce
at most λ transactions per round, and for ∀ r ∈ [1, rmax],

max

A

��{
tx ∈ T r

: tx is not (ε,A,Z, r )-cleared
}�� < λUε . (7)

The system throughput is the largest throughput that a blockchain
protocol can support.

Notice that although |T r | grows with r , the right-hand side of

(7) is constant in r ; this implies that the system throughput λ is

the expected rate at which we can clear transactions maintaining

a bounded transaction queue, taken worst-case over adversary A
and environmentsZ producing at most λ∆ transactions per round.

Definition 2.3 (Latency). For a transaction tx, let r (tx) denote
the round in which the transaction was first introduced by the env-
ioronment, and let random variable Rε (tx) denote the smallest round
r for which tx is (ε,A,Z, r )-cleared. The expected ε-latency of trans-
action tx is defined as:

τε (tx) ≜ max

Z,A
EVIEWΠ,A,Z [Rε (tx) − r (tx)] (8)

Note that if all transactions have finite ε-latency, it implies that

the blockchain has both consistency and liveness properties.

3 PROTOCOL DESCRIPTION

We first describe the content and roles of three types of blocks in

the Prism(Π,д) blockchain. We then present Algorithm 1, which

defines the protocol Π and the blockchain data structure C . We

then define the ledger inclusion rule, д, in Algorithm 2. Due to space

constraints, all pseudocode for these algorithms can be found in

5



Appendix A. Prism’s blockchain data structure,C , has one proposer
blocktree and m voter blocktrees, as shown in Figure 3. We use

these different blocktrees to maintain three distinct types of blocks:

Proposer blocks: Proposer blocks represent the skeleton of the

Prism blockchain and are mined on the proposer blocktree accord-

ing to the longest-chain rule. The level of a proposer block is defined
as its distance from the proposer genesis block. The blocktree struc-

ture is only utilized in our protocol as a proof of level of a given

proposal block. To construct the ledger, our protocol selects pro-

posal block sequences where one block is chosen at each level.

Proposer blocks can refer to transaction blocks and other proposer

blocks by including pointers to referred blocks in their payload. For

example, in Fig 4, the proposer blocktree has two proposer blocks

mined at level 1, and one proposer block mined at levels 2 and 3,

and they point to five transaction blocks in total.

Voter blocks: Voter blocks are mined onm separate voter block-

trees, each with its own genesis block, according to the longest

chain rule. We say a voter block votes on a proposer block B if it

includes a pointer to B in its payload. Note that unlike many BFT

consensus protocols, a malicious miner in Prism cannot equivocate

when voting because voter blocks are sealed by proof of work. Even

if a miner mines conflicting voter blocks and tries to send them

to disjoint sets of honest users, all users will receive both blocks

within one round. Each longest chain from each voter blocktree

can cast at most one vote for each level in the proposer blocktree.

More precisely, a voter block votes on all levels in the proposer

tree that are unvoted by the voter block’s ancestors. Therefore,

the voter trees collectively cast at mostm votes on a given level

of the proposer blocktree. Fig. 3 shows voter blocktree i and its

votes (dotted arrows) on each level of the proposer blocktree. For

each level ℓ on the proposer blocktree, the block with the highest

number of votes is defined as the leader block of level ℓ.

Transaction blocks: Transaction blocks contain transactions and

are mined on the proposer blocktree as in Fig. 3. Although transac-

tion blocks are not considered part of the proposer blocktree, each

transaction block has a proposer block as its parent.

The process by which a transaction is included in the ledger is

as follows: (1) the transaction is included in a transaction block BT .
(2) BT is referred by a proposer block BP . (3) Proposer block BP is

confirmed, either directly (by becoming a leader) or indirectly (e.g.,

by being referred by a leader).

3.1 Protocol Π
Algorithm 1 presents Prism’s protocol Π. The protocol begins with
a trusted setup, in which the environment generates genesis blocks

for the proposer blocktree and each of them voter blocktrees. Once

the trusted setup completes, the protocol enters the mining loop.

Whereas Bitcoin miners mine on a single blocktree, Prism min-

ers simultaneously mine one proposer block, one transaction block,

and m voter blocks, each with its own parent and content. This

simultaneous mining happens via cryptographic sortition. Roughly,

a miner first generates a “superblock” that contains enough infor-

mation for allm + 2 blocks simultaneously. It then tries different

nonce values; upon mining a block, the output of the hash is deter-

ministically mapped to either a voter block (in one of them trees),

a transaction block, or a proposer block (lines 41-47 in Algorithm

1). After sortition, the miner discards unnecessary information and

releases the block to the environment.

More precisely, while mining, each miner maintains outstanding

content for each of them + 2 possible mined blocks. In Bitcoin, this

content would be the transaction memory pool, but since Prism

has multiple types of blocks, each miner stores different content for

each block type. For transaction blocks, the content consists of all

transactions that have not yet been included in a transaction block.

For proposer blocks, the content is a list of transaction blocks and

proposer blocks that have not been referred by any other proposer

block. For voter blocks in the ith voter tree, the content is a list

of proposer blocks at each level in the proposer blocktree that has

not yet received a vote in the longest chain of the ith voter tree.

If a miner observes multiple proposer blocks at the same level, it

always votes on the first one it received. For example, in Figure

4, voter block vinew votes on one proposer block on levels 3 and 4

because its ancestors have voted on level 1 and 2.

Upon collecting this content, the miner generates a block. Instead

of naively including all them+2 parents
5
and content hashes in the

block, Prism’s header contains a) theMerkle root of a tree withm+2

parent blocks, b) the Merkle root of a tree withm + 2 contents, and

c) a nonce. Once a valid nonce is found, the block is sortitioned into

a proposer block, a transaction block, or a voter block on one of the

m voter trees. The mined, sortitioned block consists of the header,

the appropriate parent and content, and their respective Merkle

proofs. For instance, if the mined block is a proposer block, it would

contain only the proposer parent reference, proposer content, and

appropriate Merkle proofs; it would not store transactions or votes.
While mining, nodes may receive blocks from the network,

which are processed in much the same way as Bitcoin. Upon receiv-

ing a new block, the miner first checks validity. A block B is valid if

it satisfies the PoW inequality and the miner has all the blocks (di-

rectly or indirectly) referred by B. If the miner lacks some referred

blocks, it requests them from the network. Upon receiving a valid

transaction block B, the miner removes the transactions in B from

its transaction pool and adds B to the unreferred transaction block

pool. Upon receiving a valid voter block, the miner updates the

longest chain if needed, and updates the vote counts accordingly.

Upon receiving a valid proposer block B at a level ℓ higher than the

previous highest level, the miner makes B the new parent proposer

block, and updates allm voter trees to vote on B at level ℓ.

3.2 Ledger confirmation rule д
As defined before, the proposer block with the most votes on level ℓ

is defined as the leader block of level ℓ. The leader block for a fixed

level ℓ can initially fluctuate when the voter blocktrees start voting

on level ℓ. However, as the voter blocktrees grow, these votes on

level ℓ are cemented deeper into their respective voter blocktrees

and the leader fluctuation ceases and thus we can confirm the leader

block at level w.h.p. The sequence of leader blocks for each level of

the proposer blocktree is defined as the leader sequence.
Confirmation and Ordering: A set of transactions can often be

individually confirmed before being ordered among themselves.

For this reason, confirming transactions is easier than ordering

5
Proposer and tx block share the same parent and are included twice for simplicity.
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Figure 5: BuildLedger(): The proposer blocks for a given

proposer block sequence are blue, and the referenced trans-

action blocks are green. Each shade of gray region is all the

tx blocks referred by the proposer block.

the transactions. For example, consider the following two trans-

actions a) Alice pays Bob 10$, and b) Carol pays Drake 10$. Both

these transactions can be individually confirmed without deciding

which transaction occurred first. In Bitcoin, transactions are simul-

taneously confirmed and ordered; however, in Prism, transactions

can be confirmed before being ordered. The procedure IsTxCon-

firmed() in Algorithm 2 defines the transaction confirmation rule

д and the procedure GetOrderedConfirmedTxs() defines the rule

for ordering the confirmed transactions. Both these procedures use

BuildLedger() which is described next.

BuildLedger(): Given a proposer block sequence from levels 1

to ℓ, {p1, · · · ,pℓ}, represented by blue blocks in Fig. 5(a). Let Lpi ,
represented by green blocks in the grey shaded area in Fig. 5(a), be

an ordered list of all the transaction blocks directly or indirectly

referred by block pi . Note that a transaction block t is indirectly re-

ferred by proposer block pi if pi includes a reference link to another
proposer blockp′ that directly refers t . Since honest proposer blocks
link to any unreferenced transaction blocks and proposer blocks,

this ensures that the transaction blocks not referred by the proposer

leader sequence are also included in the ledger. Let {Lp1
, · · · ,Lpℓ }

be the transaction block list of sequence {p1, · · · ,pℓ} as shown in

Fig. 5(b). The procedure then expands this transaction-block list and

remove all the duplicate and double-spent transactions to output

ordered-transaction list as shown in Fig. 5(c).

IsTxConfirmed(): While confirming a leader block can take

some time
6
, we quickly narrow down a set of proposer blocks,

defined as proposer-set, which is guaranteed to contain the leader

block for that level. The proposer-set is realized using Def. (4.5).

This procedure first gets all the votes from the voter trees and then

gets the proposer-set for each level from the genesis to the last level

for which the proposer-set can be realized (lines:5-9). It then takes

the outer product of these proposer-sets and enumerates many

proposer block sequences (line:11). Note that by design, one of

these sequences will be the leader block sequence in the future. It

then builds a ledger for each proposer block sequence and confirms

the transaction if it is present in all of the ledgers (lines:12-14).
GetOrderedConfirmedTxs(): First obtain a leader block for

each level on proposer blocktree from genesis up until the level

which has a confirmed leader block (line:42). Then return the ledger

built from these leader blocks.

6
In absence of an active attack, it will be fast, as described in Section 4.

4 ANALYSIS

In this section, we analyze three aspects of Prism: security, through-

put, and latency. Before listing the formal guarantees satisfied by

Prism, we first describe at an intuitive level why Prism is able to

achieve good latency without sacrificing security.

4.1 Intuition and Sketch of Proofs

In the longest-chain protocol, for a fixed block size and network,

the maximum tolerable adversarial hash power β is governed by the

block production rate; the faster one produces blocks, the smaller

the tolerable β [9, 18]. In Prism, we need to be able to tolerate

β adversarial hash power in each of the voter trees and and the

proposer tree. Hence, following the observations of [9, 18] each of

these trees individually must operate at the same rate as a single

longest-chain blocktree in Bitcoin in order to be secure.

The security of Prism is provided by the voter trees; a proposer

block is confirmed by votes which are on the longest chains of

these voter trees. Consider a conservative confirmation policy for

Prism, where we wait for each vote on each voter tree to reach a

confirmation reliability 1− ε before counting it. This would require
us to wait for each vote to reach a depth of k(ε) in its respective tree,
where k(ε) denotes the confirmation depth for reliability 1− ε . This
conservative confirmation rule immediately implies that Prism has

the same security guarantee as that of each of the voter tree, i.e. that

of Bitcoin. However, this rule has as poor a latency as Bitcoin’s. For

example, for ε = 10
−3

and the tolerable adversary power β = 0.3,

the vote has to be 24 blocks deep [16]. With a more intelligent

transaction confirmation rule, we can do far better. The key insight

is that even though each vote individually stabilizes at the same

rate at Bitcoin (i.e., slowly), the aggregate opinion can converge

much faster because there are many voter trees.

4.1.1 Case 1: Isolated Proposer Block

Consider first the situation when a transaction block TB is referred

to by a honest proposer block H which is currently isolated at its

level, i.e. no other public proposal block exists at the same level for

a certain fixed number of rounds. See Figure 6(a). This case is quite

common since the mining rate of the proposer blocks is chosen

such that there is little forking in the proposer tree. Block H will

start collecting votes, each of which is on the longest chain of its

respective voter tree. Over time, each of these votes will become

deeper in its voter chain. An attack by the adversary is to mine a

private proposal block A at the same level, and on each of the voter

trees fork off and mine a private alternate chain and send its vote

to the block A. After leader block H is confirmed, the adversary

continues to mine on each of the voter alternate chains to attempt

to overtake the public longest chain and shift the vote from H to A.
If the adversary can thereby get more votes on A than on H , then

its attack is successful.

This can be viewed as them-chain analog to Nakamoto’s private

attack on a single chain [16], where instead of having one race

between the honest chain and the attack chain we have m such

races. In fact, Nakamoto’s calculations on the success probability of

an attack on a single chain can help us determine how deep we need

to wait for the votes to become to confirm the proposer block H .

At tolerable adversary power β = 0.3, the reversal probability in a
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Figure 6: (a) Transaction block is referred to by an isolated

honest proposer block. (b) Transaction block is referred to

by a non-isolated proposer block but on the next level there

is an isolated proposer block. Note that the link from H2

to TB is implicit; since H2 is honest, it refers to all unrefer-

enced transaction and proposer blocks, i.e., H1 and A1. Since

H1 refers TB, H2 implicitly does too (Section 3.2)

.

single chain is 0.45when a block is 2-deep [16].Withm = 1000 voter

chains and each vote being 2-deep, the expected number of chains

that can be reversed by the adversary is 450. The probability that

the adversary got lucky and can reverse more than half the votes,

i.e. 500, is about 10
−3
. Hence to achieve ε = 10

−3
, we only need to

wait for 1000 votes each 2-deep. This incurs much shorter latency

than the 24 block depth needed for each vote to be reversed with

probability 10
−3
. This reduction in latency is conceptually similar

to averaging many unreliable classifiers to form a strong aggregate

classifier: the more voter chains there are, the less certainty of

permanence each individual vote needs to be, thereby reducing

confirmation time. This gain comes without sacrificing security:

each voter chain is operating slowly enough to tolerate β adversarial
hash power.

Just like Nakamoto’s private attack, the attack considered here

is a particular attack. Our formal security analysis, sketched in

Section 4.1.3, consider all possible attacks in the model. In particular,

the attacker can correlate its actions on the different voter chains.

However, the confirmation latency behaves similarly to the latency

under this attack.

4.1.2 Case 2: Non-isolated Proposer Block

Consider now the case when the the transaction block TB is referred
to by a honest proposal block H1 which is not isolated at its level,

i.e. H1 is matched by an adversarial public proposer block A1 (the

competing proposer block could also be honest). This matching

could persist for L levels until reaching a level when there is an

isolated honest proposal block. See Figure 6(b) for the special case

of L = 1. Let us separately consider the life cycle of an honest

transaction vs. a double-spent one.

Honest Transaction:Anaive approach for confirming TBwould
be to wait until we can definitively confirmH1 orA1. However, this

may be slow because of adversarial attacks that try to balance votes.

A key insight is that for honest (non-double-spent) transactions, we

do not need to know which of H1 and A1 is confirmed—only that

one of them will be confirmed. This weaker form of list confirma-
tion works because if A1 eventually gets confirmed, a later honest

proposer block can still refer to H1 and include TB (Section 3.2). To

confirm an honest transaction at level i , we need two events: (1) list
confirmation of all levels up to i; (2) an isolated honest proposer

at level i . Once we have list-confirmed a set of proposer blocks

at level i referring TB (e.g., either H1 or A1 will be the leader), we

know that no other block can be the leader at that level. However,

list confirmation alone is not enough for honest transaction confir-

mation if the transaction is not present in all ledgers. In that case,

we also need to wait for an isolated honest proposer level, where

the proposer block will implicitly or explicitly include TB in the

ledger. Once this isolated honest proposer level is confirmed and
all the preceding levels are list-confirmed, we can be sure that TB
will appear in the final ledger. The confirmation latency is thus the

maximum of two parts:

(1) List confirmation. We fast confirm that the adversary cannot

produce a private block A with more votes than the votes of public

blocks H1 and A1. The logic is similar to the case of isolated honest

proposer block discussed above, viewing the situation as a race

between honest nodes voting for the public blocks H1 or A1 and

adversary voting for A. Adversarial actions (e.g., presenting first

H1 to half the honest nodes and A1 to the other half) can cause the

number of votes to be evenly split between H1 and A1, which can

slow down list confirmation, albeit not significantly.

(2) Isolated honest proposer level. In Figure 6(a), if we wait until

level 2, we see an isolated public proposer block H2 which can be

fast confirmed (Section 4.1.1). At this point, we know that the final

leader sequence at levels 1, 2 is either H1,H2 or A1,H2, both of

which contain our honest transaction sinceH2 refers to all previous

unreferred proposer blocks. Since isolated honest proposer blocks

happen frequently (Section 4.1.3), this step is fast.

Double-Spent Transaction: To confirm double-spent transac-

tions, we need stronger conditions than those listed above: namely,

instead of list confirmation, we need unique block confirmation,
confirming which block at a proposer level will be the ultimate

leader. This is achieved once list confirmation occurs and one of

the list-confirmed blocks can be reliably declared the winner. If one

of the public proposer blocks H1 or A1 gathers many more votes

than the other block, then we can fast confirm a unique leader, even

for double-spent transactions; this happens both in the absence of

active attacks and under some classes of attacks (Section 5). How-

ever, other adversarial attacks (such as balancing the votes on H1

and A1) can cause the number of votes to be evenly split between

H1 and A1, so we cannot fast confirm a leader block. In this case,

we must wait until every vote on H1 and A1 stabilizes, in which

case either H1 or A1 is confirmed and only one of the double-spent

transactions is accepted. A content-dependent tie breaking rule can

be used to break ties after votes are stabilized.
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4.1.3 Sketch of Security and Latency Proofs

CP: Leader sequence
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Figure 7: Common-prefix and chain-quality properties of

voter chains imply common-prefix and chain-quality prop-

erties of the proposer leader sequence.

To translate the above intuitive arguments into formal security

and latency proofs, we borrow key ideas from [9], but also require

several new insights. [9] proves the consistency and liveness of

the Bitcoin backbone protocol by first proving two key properties:

common-prefix and chain-quality. Similarly, to show that Prism

achieves consistency and liveness, we need to show that the pro-

poser leader sequence satisfies these properties. The results of [9]

do not directly apply because the proposer leader sequence is not

determined by a single longest-chain protocol; rather, it is deter-

mined by a combination of the proposer tree and the aggregate

voter tree votes. As shown in Figure 7, we prove the two proper-

ties for the proposer and the voter trees and use them to prove

corresponding properties for the leader sequence. Specifically:

(1) Each voter tree is constructed according to the backbone

protocol, and hence satisfies the chain-quality and common-prefix

property. Chain-quality of the voter trees implies that honest nodes

will continually be able to vote for proposer blocks from every voter

tree and at every proposer level . Common-prefix implies that all

these votes will eventually stabilize. This further implies that the

leader sequence satisfies the common-prefix property (Theorem

4.1), since the leader block at each level will eventually stabilize.

Hence, the resulting ledger is consistent. The leader-sequence also

can be shown to have a certain chain quality (Lemma D.6) and this

ensures liveness of the ledger (Theorem 4.2).

(2) To show fast confirmation of all honest transactions, we fol-

low the intuitive arguments above. We first show that an isolated

proposer block, or an honest proposer block that does not have a

competing adversarial proposer block for a certain duration of time,

appears in constant expected time (independent of ε). Specifically,
the honest users are mining proposer blocks at the rate (1 − β) ¯fp
whereas the adversary is mining at rate β ¯fp . Since β < 0.5, the ad-

versary is mining slower than the honest users, and within the next

1

1−2β levels in expectation, there is a level on which the adversary

cannot immediately create a competing block with the honest block

7
. Similarly, an isolated level on which the adversary cannot match

the honest block for next R rounds after the honest block is mined

happens within
1+2R ¯fv

1−2β levels in expectation.

(3) We next show that we can fast confirm an isolated public

honest proposer block. The argument has two parts: i) the isolated

honest block wins enough votes; 2) the leader block persists, i.e.,

wins the vote race against a private adversarial proposer block for

7
Random walk analysis

all time. The first part follows from the chain-quality of the voter

chains, which ensures that there is a steady stream of honest votes

for the public proposer block until it gathers a sufficiently large

fraction of total votes (Lemma E.7). The second part follows from

common-prefix of the voter trees, which ensures that a large frac-

tion of the votes cannot be reversed by the adversary (Lemma E.9).

(4) Fast list confirmation of proposer blocks at all previous levels can

be proved similarly (see Lemma E.10 and Theorem 4.6). Now, Prism

ensures that at each proposer level, one of the list-confirmed blocks

will remain in the ledger. This, combined with the assurance that

every transaction will be either directly or indirectly referred by

the isolated proposal block, ensures that all honest transactions are

entered into the ledger. This lets Prism confirm honest transactions

within a short time (see Theorem 4.7).

Note that [9] proves the k-common-prefix property is satisfied

with high probability only for large k . Similarly, chain-quality is

shown to be satisfied with high probability only over a large number

of blocks. While this is sufficient to prove (1) and (2) above for the

consistency and liveness of the eventual ledger, it is not sufficient to

prove (4) and (5) for fast confirmation latency, since we need these

two properties over short latencies, i.e. windows of few blocks. In

these small time windows, these properties do not hold with high

probabilitymicroscopically, for every individual voter tree. However,
since the proposer leader block depends only on the macroscopic
vote counts, we only need to show that these properties hold with

high probability macroscopically, for a good fraction of voter trees.

4.2 Parameter Selection

We first specify the parameters of Prism in terms of the parameters

of the physical network. First, recall that the network delay of a

block containing B transactions is given by ∆ = B
C + D. Let Bt ,

Bv , and Bp be the size of transaction, voter, and proposer blocks

respectively, in units of number of transactions. The network delays

∆t ,∆v , and ∆p for each type of block are thus given by:

∆t =
Bt
C
+ D, ∆v =

Bv
C
+ D, ∆p =

Bp

C
+ D. (9)

Given that different block types have different sizes and network

delays, what is a reasonable choice for ∆, the duration of a round?

Since the synchronous model is used for security analysis, and

the security of Prism depends only on the network delay of the

proposer and voter blocks but not of the transaction blocks, we

choose: ∆ = max{∆p ,∆v }. Moreover, the voter blocks and the

proposer blocks contain only reference links and no transactions,

so their sizes are expected to be small. Assuming the bandwidth-

delay product CD/max{Bv ,Bp } ≫ 1, we have that the network

delay ∆ = max{ BvC ,
Bp
C } + D ≈ D, the smallest possible.

To provide security, we set the mining rate
¯fv := fvD on each

voter tree such that each voter tree is secure under the longest

chain rule. According to [9] it should satisfy

¯fv <
1

1 − β log

1 − β
β
. (10)

We also set the proposer and voter mining rates to be the same, i.e.

fp = fv . This is not necessary but simplifies the notation.

Third, to utilize 90% of the communication bandwidth for carry-

ing transaction blocks, we set ftBt = 0.9C . The individual choices

9



of ft and Bt are not very important, but choosing large Bt and

small ft is preferable to ensure that the number of reference links

to transaction blocks per proposer block is small, thus giving a

small proposer block size Bp .
Finally, speed up voting, wemaximize the number of voter chains

subject to the stability constraint of Sec. 2: fpBp+mfvBv+ ftBt < C .
Substituting the values of fv , fp and ftBt , we get

m =
0.1CD
¯fvBv

−
Bp

Bv
≥ (1 − β)

log( 1−ββ )
· CD
Bv
−

Bp

Bv

i.e. the number of voter trees is at least proportional toCD/Bv , the
bandwidth-delay product in unit of voting blocks. This number is

expected to be large, which is a key advantage. The only degree of

freedom left is the choice of
¯fv , subject to (10). We will return to

this issue in Section 4.5 when we discuss fast confirmation latency.

4.3 Total Ordering

In this subsection, we show that Prism can achieve total transaction

ordering for any β < 0.5 using the procedure GetOrderedCon-

firmedTxs() in Algorithm 2. That is, as long as the adversary’s

hash power is less than 50%, transactions can be ordered with con-

sistency and liveness guarantees. Following [9], we do so by first

establishing two backbone properties: common-prefix and chain

quality of the proposer leader sequence. Let P(r ) denote the set of
proposer blocks mined by round r . Let Pℓ(r ) ⊆ P(r ) denote the
set of proposer blocks mined on level ℓ by round r . Let the first
proposer block on level ℓ be mined in round Rℓ . Let Vp (r ) denote
the number of votes on proposer block p ∈ P(r ) at round r . Re-
call that only votes from the main chains of the voter trees are

counted. The leader block on level ℓ at round r , denoted by p∗
ℓ
(r ),

is the proposer block with maximum number of votes in the set

Pℓ(r ) i.e, p∗ℓ(r ) := argmax

p∈Pℓ (r )
Vp (r ), where tie-breaking is done in a

hash-dependent way. The leader sequence up to level ℓ at round r ,
denoted by LedSeq ℓ(r ) is:

LedSeq ℓ(r ) := [p∗
1
(r ),p∗

2
(r ), · · · ,p∗ℓ(r )]. (11)

The leader sequence at the end of round rmax, the end of the

horizon, is the final leader sequence, LedSeq ℓ(rmax).

Theorem 4.1 (Leader seqence common-prefix property).

Suppose β < 0.5. For a fixed level ℓ, we have

LedSeq ℓ(r ) = LedSeq ℓ(rmax) ∀r ≥ Rℓ + r (ε) (12)

with probability 1 − ε , where r (ε) = 1024

¯fv (1−2β )3 log
8mrmax

ε , and Rℓ is

the round in which the first proposer block on level ℓ was mined.

Proof. See Appendix D. □

Theorem 4.2 (Liveness). Assume β < 0.5. Once a transaction
enters into a transaction block, w.p 1 − ε it will eventually be pointed
to by a permanent leader sequence block after

O

(
log(1/ε)
(1 − 2β)4

)
rounds.

Proof. See Appendix D. □

Theorems 4.1 and 4.2 yield the following:

Adversary: 𝛽

0.9𝐶

Throughput

0.9(1 − 𝛽)𝐶1 −
1
𝑒 𝐶

0.50.49

Bitcoin

Prism

Bitcoin operating 
point 

0.05𝐶

Ghost

Figure 8: Throughput versus β tradeoffs of Prism, Bitcoin and

GHOST. The tradeoffs for the baseline protocols are upper

bounds, while that for Prism is exact.

Theorem 4.3. The ledger has consistency and liveness with the ex-
pected ε-latency for all transactions (Def. 8) to be at mostO (log(1/ε))
for β < 0.5.

4.4 Throughput

We now analyze the transaction throughput of Prism. The leader

sequence blocks of Prism orders all the transactions in the transac-

tion blocks they refer to. Due to liveness, all transaction blocks are

referred to by some proposer blocks. Since the transaction block

generation rate ftBt is chosen to be 0.9C transactions per second,

assuming a worst case that only honest blocks carry transactions

yield a throughput of 0.9(1 − β)C transactions per seconds.

This seems to give the advertised goal, but there is a catch: blocks

mined in the same round may contain the same transactions, since

transactions are broadcast to the entire network. To achieve the

full throughput, one can minimize the transaction redundancy in

the blocks by scheduling different transactions to different blocks.

Concretely, we split the transactions randomly into q queues, and

each honest block is created from transactions drawn from one

randomly chosen queue. Thinking of each transaction queue as a

color, we have transaction blocks of q different colors.

We will only have honest blocks with redundant transactions

if two or more blocks of the same color are mined in the same

round. The number of honest blocks of the same color mined at

the same round is distributed as Poisson with mean (1 − β)ft∆/q,
and so the throughput of non-redundant blocks of a given color

is the probability that at least one such block is mined in a round,

i.e. 1 − e−(1−β )ft∆/q blocks per round. The total throughput of

non-redundant honest blocks of all colors is

q
[
1 − e−(1−β )ft∆/q

]
blocks per round. (13)

For large q, this approaches (1 − β)ft∆ blocks per round, which

equals 0.9(1 − β)C transactions per second when we set ft =
0.9C/Bt . Thus, we achieve the claimed result (4). Note that the

throughput as a fraction of capacity does not vanish as β → 0.5,

unlike Bitcoin and GHOST (App. H and I).

Theorem 4.4 (Throughput). Theorem 4.8 guarantees that all
the transactions proposed before round r −O (log(1/ε)) are confirmed
by round r . Therefore Prism can support λ = 0.9(1 − β)C throughput
(Def. 7), whereUε = O (log(1/ε)).

10
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𝑝" 𝑝# 𝑝$ 𝑝% 𝑝& 𝑝'()*+,-	

Πℓ(𝑟) : Confirmed proposer list

V1(r)<latexit sha1_base64="rzQb3Vz44H3z7CPjK0NcmHNHfr4=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZREBD0WvXisYD+gDWGzmbRLN5uwu1FK7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzgpQzpR3n2yqtrW9sbpW3Kzu7e/sHdvWwo5JMUmjThCeyFxAFnAloa6Y59FIJJA44dIPxzczvPoBULBH3epKCF5OhYBGjRBvJt6uDTIQgAyLzztR36/LMt2tOw5kDrxK3IDVUoOXbX4MwoVkMQlNOlOq7Tqq9nEjNKIdpZZApSAkdkyH0DRUkBuXl89On+NQoIY4SaUpoPFd/T+QkVmoSB6YzJnqklr2Z+J/Xz3R05eVMpJkGQReLooxjneBZDjhkEqjmE0MIlczciumISEK1SatiQnCXX14lnfOG6zTcu4ta87qIo4yO0QmqIxddoia6RS3URhQ9omf0it6sJ+vFerc+Fq0lq5g5Qn9gff4AwDWTpQ==</latexit><latexit sha1_base64="rzQb3Vz44H3z7CPjK0NcmHNHfr4=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZREBD0WvXisYD+gDWGzmbRLN5uwu1FK7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzgpQzpR3n2yqtrW9sbpW3Kzu7e/sHdvWwo5JMUmjThCeyFxAFnAloa6Y59FIJJA44dIPxzczvPoBULBH3epKCF5OhYBGjRBvJt6uDTIQgAyLzztR36/LMt2tOw5kDrxK3IDVUoOXbX4MwoVkMQlNOlOq7Tqq9nEjNKIdpZZApSAkdkyH0DRUkBuXl89On+NQoIY4SaUpoPFd/T+QkVmoSB6YzJnqklr2Z+J/Xz3R05eVMpJkGQReLooxjneBZDjhkEqjmE0MIlczciumISEK1SatiQnCXX14lnfOG6zTcu4ta87qIo4yO0QmqIxddoia6RS3URhQ9omf0it6sJ+vFerc+Fq0lq5g5Qn9gff4AwDWTpQ==</latexit><latexit sha1_base64="rzQb3Vz44H3z7CPjK0NcmHNHfr4=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZREBD0WvXisYD+gDWGzmbRLN5uwu1FK7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzgpQzpR3n2yqtrW9sbpW3Kzu7e/sHdvWwo5JMUmjThCeyFxAFnAloa6Y59FIJJA44dIPxzczvPoBULBH3epKCF5OhYBGjRBvJt6uDTIQgAyLzztR36/LMt2tOw5kDrxK3IDVUoOXbX4MwoVkMQlNOlOq7Tqq9nEjNKIdpZZApSAkdkyH0DRUkBuXl89On+NQoIY4SaUpoPFd/T+QkVmoSB6YzJnqklr2Z+J/Xz3R05eVMpJkGQReLooxjneBZDjhkEqjmE0MIlczciumISEK1SatiQnCXX14lnfOG6zTcu4ta87qIo4yO0QmqIxddoia6RS3URhQ9omf0it6sJ+vFerc+Fq0lq5g5Qn9gff4AwDWTpQ==</latexit><latexit sha1_base64="rzQb3Vz44H3z7CPjK0NcmHNHfr4=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZREBD0WvXisYD+gDWGzmbRLN5uwu1FK7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzgpQzpR3n2yqtrW9sbpW3Kzu7e/sHdvWwo5JMUmjThCeyFxAFnAloa6Y59FIJJA44dIPxzczvPoBULBH3epKCF5OhYBGjRBvJt6uDTIQgAyLzztR36/LMt2tOw5kDrxK3IDVUoOXbX4MwoVkMQlNOlOq7Tqq9nEjNKIdpZZApSAkdkyH0DRUkBuXl89On+NQoIY4SaUpoPFd/T+QkVmoSB6YzJnqklr2Z+J/Xz3R05eVMpJkGQReLooxjneBZDjhkEqjmE0MIlczciumISEK1SatiQnCXX14lnfOG6zTcu4ta87qIo4yO0QmqIxddoia6RS3URhQ9omf0it6sJ+vFerc+Fq0lq5g5Qn9gff4AwDWTpQ==</latexit>

Blocks

Vn(r)
<latexit sha1_base64="rrlwtXCtThC1lHl0w3Ar6b2eLxg=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZREBD0WvXisYD+gDWGzmbRLN5uwu1FK7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzgpQzpR3n2yqtrW9sbpW3Kzu7e/sHdvWwo5JMUmjThCeyFxAFnAloa6Y59FIJJA44dIPxzczvPoBULBH3epKCF5OhYBGjRBvJt6uDTIQgAyLzztQXdXnm2zWn4cyBV4lbkBoq0PLtr0GY0CwGoSknSvVdJ9VeTqRmlMO0MsgUpISOyRD6hgoSg/Ly+elTfGqUEEeJNCU0nqu/J3ISKzWJA9MZEz1Sy95M/M/rZzq68nIm0kyDoItFUcaxTvAsBxwyCVTziSGESmZuxXREJKHapFUxIbjLL6+SznnDdRru3UWteV3EUUbH6ATVkYsuURPdohZqI4oe0TN6RW/Wk/VivVsfi9aSVcwcoT+wPn8AHW+T4g==</latexit><latexit sha1_base64="rrlwtXCtThC1lHl0w3Ar6b2eLxg=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZREBD0WvXisYD+gDWGzmbRLN5uwu1FK7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzgpQzpR3n2yqtrW9sbpW3Kzu7e/sHdvWwo5JMUmjThCeyFxAFnAloa6Y59FIJJA44dIPxzczvPoBULBH3epKCF5OhYBGjRBvJt6uDTIQgAyLzztQXdXnm2zWn4cyBV4lbkBoq0PLtr0GY0CwGoSknSvVdJ9VeTqRmlMO0MsgUpISOyRD6hgoSg/Ly+elTfGqUEEeJNCU0nqu/J3ISKzWJA9MZEz1Sy95M/M/rZzq68nIm0kyDoItFUcaxTvAsBxwyCVTziSGESmZuxXREJKHapFUxIbjLL6+SznnDdRru3UWteV3EUUbH6ATVkYsuURPdohZqI4oe0TN6RW/Wk/VivVsfi9aSVcwcoT+wPn8AHW+T4g==</latexit><latexit sha1_base64="rrlwtXCtThC1lHl0w3Ar6b2eLxg=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZREBD0WvXisYD+gDWGzmbRLN5uwu1FK7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzgpQzpR3n2yqtrW9sbpW3Kzu7e/sHdvWwo5JMUmjThCeyFxAFnAloa6Y59FIJJA44dIPxzczvPoBULBH3epKCF5OhYBGjRBvJt6uDTIQgAyLzztQXdXnm2zWn4cyBV4lbkBoq0PLtr0GY0CwGoSknSvVdJ9VeTqRmlMO0MsgUpISOyRD6hgoSg/Ly+elTfGqUEEeJNCU0nqu/J3ISKzWJA9MZEz1Sy95M/M/rZzq68nIm0kyDoItFUcaxTvAsBxwyCVTziSGESmZuxXREJKHapFUxIbjLL6+SznnDdRru3UWteV3EUUbH6ATVkYsuURPdohZqI4oe0TN6RW/Wk/VivVsfi9aSVcwcoT+wPn8AHW+T4g==</latexit><latexit sha1_base64="rrlwtXCtThC1lHl0w3Ar6b2eLxg=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZREBD0WvXisYD+gDWGzmbRLN5uwu1FK7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzgpQzpR3n2yqtrW9sbpW3Kzu7e/sHdvWwo5JMUmjThCeyFxAFnAloa6Y59FIJJA44dIPxzczvPoBULBH3epKCF5OhYBGjRBvJt6uDTIQgAyLzztQXdXnm2zWn4cyBV4lbkBoq0PLtr0GY0CwGoSknSvVdJ9VeTqRmlMO0MsgUpISOyRD6hgoSg/Ly+elTfGqUEEeJNCU0nqu/J3ISKzWJA9MZEz1Sy95M/M/rZzq68nIm0kyDoItFUcaxTvAsBxwyCVTziSGESmZuxXREJKHapFUxIbjLL6+SznnDdRru3UWteV3EUUbH6ATVkYsuURPdohZqI4oe0TN6RW/Wk/VivVsfi9aSVcwcoT+wPn8AHW+T4g==</latexit>

V n(r)
<latexit sha1_base64="jcW7HNCfgt7Mb9uMvrhVpfS8OT0=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBahbkoigi6LblxWsA9oQ5hMJ+3QySTMTJQS+yluXCji1i9x5984abPQ1gMDh3Pu4d45QcKZ0o7zbZXW1jc2t8rblZ3dvf0Du3rYUXEqCW2TmMeyF2BFORO0rZnmtJdIiqOA024wucn97gOVisXiXk8T6kV4JFjICNZG8u3qIDZ2ns46M1/U5Zlv15yGMwdaJW5BalCg5dtfg2FM0ogKTThWqu86ifYyLDUjnM4qg1TRBJMJHtG+oQJHVHnZ/PQZOjXKEIWxNE9oNFd/JzIcKTWNAjMZYT1Wy14u/uf1Ux1eeRkTSaqpIItFYcqRjlHeAxoySYnmU0MwkczcisgYS0y0aatiSnCXv7xKOucN12m4dxe15nVRRxmO4QTq4MIlNOEWWtAGAo/wDK/wZj1ZL9a79bEYLVlF5gj+wPr8ATgDk/M=</latexit><latexit sha1_base64="jcW7HNCfgt7Mb9uMvrhVpfS8OT0=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBahbkoigi6LblxWsA9oQ5hMJ+3QySTMTJQS+yluXCji1i9x5984abPQ1gMDh3Pu4d45QcKZ0o7zbZXW1jc2t8rblZ3dvf0Du3rYUXEqCW2TmMeyF2BFORO0rZnmtJdIiqOA024wucn97gOVisXiXk8T6kV4JFjICNZG8u3qIDZ2ns46M1/U5Zlv15yGMwdaJW5BalCg5dtfg2FM0ogKTThWqu86ifYyLDUjnM4qg1TRBJMJHtG+oQJHVHnZ/PQZOjXKEIWxNE9oNFd/JzIcKTWNAjMZYT1Wy14u/uf1Ux1eeRkTSaqpIItFYcqRjlHeAxoySYnmU0MwkczcisgYS0y0aatiSnCXv7xKOucN12m4dxe15nVRRxmO4QTq4MIlNOEWWtAGAo/wDK/wZj1ZL9a79bEYLVlF5gj+wPr8ATgDk/M=</latexit><latexit sha1_base64="jcW7HNCfgt7Mb9uMvrhVpfS8OT0=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBahbkoigi6LblxWsA9oQ5hMJ+3QySTMTJQS+yluXCji1i9x5984abPQ1gMDh3Pu4d45QcKZ0o7zbZXW1jc2t8rblZ3dvf0Du3rYUXEqCW2TmMeyF2BFORO0rZnmtJdIiqOA024wucn97gOVisXiXk8T6kV4JFjICNZG8u3qIDZ2ns46M1/U5Zlv15yGMwdaJW5BalCg5dtfg2FM0ogKTThWqu86ifYyLDUjnM4qg1TRBJMJHtG+oQJHVHnZ/PQZOjXKEIWxNE9oNFd/JzIcKTWNAjMZYT1Wy14u/uf1Ux1eeRkTSaqpIItFYcqRjlHeAxoySYnmU0MwkczcisgYS0y0aatiSnCXv7xKOucN12m4dxe15nVRRxmO4QTq4MIlNOEWWtAGAo/wDK/wZj1ZL9a79bEYLVlF5gj+wPr8ATgDk/M=</latexit><latexit sha1_base64="jcW7HNCfgt7Mb9uMvrhVpfS8OT0=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBahbkoigi6LblxWsA9oQ5hMJ+3QySTMTJQS+yluXCji1i9x5984abPQ1gMDh3Pu4d45QcKZ0o7zbZXW1jc2t8rblZ3dvf0Du3rYUXEqCW2TmMeyF2BFORO0rZnmtJdIiqOA024wucn97gOVisXiXk8T6kV4JFjICNZG8u3qIDZ2ns46M1/U5Zlv15yGMwdaJW5BalCg5dtfg2FM0ogKTThWqu86ifYyLDUjnM4qg1TRBJMJHtG+oQJHVHnZ/PQZOjXKEIWxNE9oNFd/JzIcKTWNAjMZYT1Wy14u/uf1Ux1eeRkTSaqpIItFYcqRjlHeAxoySYnmU0MwkczcisgYS0y0aatiSnCXv7xKOucN12m4dxe15nVRRxmO4QTq4MIlNOEWWtAGAo/wDK/wZj1ZL9a79bEYLVlF5gj+wPr8ATgDk/M=</latexit>

Vn(r)
<latexit sha1_base64="1hywYbywf7YqCOBqaw0OL58rnsM=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/QhrLZbtqlm03cnQgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqAScJ9yM6VCIUjKKVOllr2ldVfd4vV9yaOwdZJV5OKpCj0S9/9QYxSyOukElqTNdzE/QzqlEwyaelXmp4QtmYDnnXUkUjbvxsfu+UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGbPk4HQnKGcWEKZFvZWwkZUU4Y2opINwVt+eZW0LmqeW/PuLyv1mzyOIpzAKVTBgyuowx00oAkMJDzDK7w5j86L8+58LFoLTj5zDH/gfP4AltyPqA==</latexit><latexit sha1_base64="1hywYbywf7YqCOBqaw0OL58rnsM=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/QhrLZbtqlm03cnQgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqAScJ9yM6VCIUjKKVOllr2ldVfd4vV9yaOwdZJV5OKpCj0S9/9QYxSyOukElqTNdzE/QzqlEwyaelXmp4QtmYDnnXUkUjbvxsfu+UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGbPk4HQnKGcWEKZFvZWwkZUU4Y2opINwVt+eZW0LmqeW/PuLyv1mzyOIpzAKVTBgyuowx00oAkMJDzDK7w5j86L8+58LFoLTj5zDH/gfP4AltyPqA==</latexit><latexit sha1_base64="1hywYbywf7YqCOBqaw0OL58rnsM=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/QhrLZbtqlm03cnQgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqAScJ9yM6VCIUjKKVOllr2ldVfd4vV9yaOwdZJV5OKpCj0S9/9QYxSyOukElqTNdzE/QzqlEwyaelXmp4QtmYDnnXUkUjbvxsfu+UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGbPk4HQnKGcWEKZFvZWwkZUU4Y2opINwVt+eZW0LmqeW/PuLyv1mzyOIpzAKVTBgyuowx00oAkMJDzDK7w5j86L8+58LFoLTj5zDH/gfP4AltyPqA==</latexit><latexit sha1_base64="1hywYbywf7YqCOBqaw0OL58rnsM=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/QhrLZbtqlm03cnQgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqAScJ9yM6VCIUjKKVOllr2ldVfd4vV9yaOwdZJV5OKpCj0S9/9QYxSyOukElqTNdzE/QzqlEwyaelXmp4QtmYDnnXUkUjbvxsfu+UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGbPk4HQnKGcWEKZFvZWwkZUU4Y2opINwVt+eZW0LmqeW/PuLyv1mzyOIpzAKVTBgyuowx00oAkMJDzDK7w5j86L8+58LFoLTj5zDH/gfP4AltyPqA==</latexit>

Figure 9: Public proposer block p1 has the largest lower con-

fidence bound, which is larger than the upper confidence

bound of the private block. So list confirmation is possible

and the set confirmed is Πℓ(r ) = {p1,p2,p3}.

4.5 Fast confirmation latency

4.5.1 List confirmation latency

We convert the intuition from Section 4.1 to a formal rule for fast

confirming a set of proposer blocks, which enables confirming a

list of proposer sequences. The idea is to have confidence intervals
around the number of votes cast on each proposer block. Figure

9 gives an example where there are 5 proposal blocks in public

at a given level, and we are currently at round r . The confidence

interval [Vn (r ),V n (r )] for the votes on proposer block pn bounds

the maximum number of votes the block can lose or gain from

uncast votes and votes reversed by the adversary. We also consider

a potential private proposer block, with an upper bound on the

maximum number of votes it can accumulate in the future. We can

fast confirm a set of proposal blocks whenever the upper confidence

bound of the private block is below the lower confidence bound of

the public proposal block with the largest lower confidence bound.

More formally: As defined earlier, Pℓ(r ) = {p1,p2...} is the set
of proposer blocks at level ℓ at round r . LetV d

n (r ) be the number of

votes at depth d or greater for proposer block pn at round r . Define:

δd := max

(
1

4
¯fvd
,

1 − 2β

8 logm

)
, ε ′ = 1 − r2

max
e
− (1−2β )m

16 logm ,

Vn (r ) := max

d≥0

(
V d
n (r ) − 2δdm

)
+
,

V n (r ) :=m −
∑

pn′ ∈Pℓ (r )\{pn }
Vn′(r ),

V
private

(r ) := 0, V private(r ) :=m −
∑

pn′ ∈Pℓ (r )
Vn′(r ).

Definition 4.5. Proposer set confirmation policy: If

max

n
Vn (r ) > V private(r ), (14)

then we confirm the the set of proposer blocks Πℓ(r ), where

Πℓ(r ) := {pn : V n (r ) > max

i
Vi (r )}. (15)

Next, we show that we can confirm proposer sets up to level

ℓ with an expected latency independent of ε , and the final leader

sequence is contained in the outer product of the confirmed sets.

Theorem 4.6 (List common-prefix property ). Suppose β < 0.5.
Suppose the first proposer block at level ℓ appears at round Rℓ . Then
w.p. ε ′, we can confirm proposer sets Π1(r )), . . . ,Πℓ(r ) for all rounds
r ≥ Rℓ + R

conf
ℓ

, where

E[Rconf
ℓ
] ≤ 2808

(1 − 2β)3 ¯fv
log

50

(1 − 2β) +
256

(1 − 2β)6 ¯fvm2

, (16)

and p∗
ℓ′(rmax) ∈ Πℓ′(r ) ∀ℓ′ ≤ ℓ and r ≥ Rℓ + R

conf
ℓ
.

Proof. See Appendix E. □

Let us express the latency bound (16) in terms of physical param-

eters. If we set the voting rate
¯fv equal to the largest possible given

the security constraint (10):
¯fv =

1

1−β log
1−β
β , then according to

(11), we have

m =
0.1(1 − β)
log( 1−ββ )

· CD
Bv
−

Bp

Bv
.

With this choice of parameters, and in the regimewhere the bandwidth-

delay productCD/Bv is large so that the second term in (16) can be

neglected, the expected latency for list confirmation is bounded by

c1(β)D seconds, i.e. proportional to the propagation delay. Here,

c1(β) :=
2808(1 − β)

(1 − 2β)3 log
1−β
β

log

50

(1 − 2β)

and is positive for β < 0.5. The confirmation error probability is ex-

ponentially small inCD/Bv . This is the constant part of the latency
versus security parameter tradeoff of Prism in Fig. 1. Since CD/Bv
is very large in typical networks, a confirmation error probability

exponentially small in CD/Bv is already very small. To achieve an

even smaller error probability ε we can reduce the voting rate
¯fv

smaller below the security constraint (10) and increase the number

of voter chains. More specifically, we set

¯fv =
0.1CD

Bv log
1

ε
, (17)

resulting inm = log
1

ε −
Bp
Bv ≈ log

1

ε , yielding the desired security

parameter. Again neglecting the second term in (16), the corre-

sponding latency bound is

c2(β)Bv
C

log

1

ε
seconds,

where c2(β) := 54000

(1−2β )3 log
50

(1−2β ) . This is the linearly increasing

part of the Prism curve in Figure 1, with slope inversely proportional

to the network capacity C/Bv .
11



Confirmation Latency 1

Confirmation Latency 2

Round 𝑟: 𝑡𝑥 is part of 
a transaction block

Proposer block referring
𝑡𝑥 is mined at level ℓ'

Leader block at
level ℓ' is confirmed

All leader block lists up 
to level ℓ' are confirmed

rounds

Figure 10: Components of the latency: a) Confirmation la-

tency 1 is analyzed in Theorem 4.7, and b) Confirmation la-

tency 2 is analyzed in Theorem 4.6.

4.5.2 Fast confirmation of honest transactions

In the previous subsection we have shown that one can fast confirm

a set of proposer block sequences which is guaranteed to contain the

prefix of the final totally ordered leader sequence. As discussed in

Section 3, each of these proposer block sequence creates an ordered

ledger of transactions using the reference links to the transaction

blocks. In each of these ledgers, double-spends are removed to

sanitize the ledger. If a transaction appears in all of the sanitized
ledgers in the list, then it is guaranteed to be in the final total ordered

sanitized ledger, and the transaction can be fast confirmed. All

honest transactions without double-spends eventually have this list-
liveness property; when only a single honest proposer block appears
in a level and becomes the leader, it adds any honest transactions

that have not already appeared in at least one ledger in the list.

Due to the positive chain-quality of the leader sequence (Theorem

4.2), an isolated honest level eventually occurs. The latency of

confirming honest transactions is therefore bounded by the sum of

the latency of list confirmation in Theorem 4.6 plus the latency of

waiting for this event to occur (Fig. 10). The latter is given by:

Theorem 4.7 (List-liveness). Assume β < 0.5. If an honest
transaction without double spends is mined in a transaction block in
round r , then w.p. 1− r2

max
e
− m

16 logm it will appear in all of the ledgers
corresponding to proposer block sequences after an expected latency
no more than

2592

(1 − 2β)3 ¯fv
log

50

(1 − 2β) rounds.

Proof. Appendix F. □

Figure 10 shows the various components of the overall latency

we analyzed. We can see that the confirmation latency from the

time an honest transaction enters a blocks to the time it is confirmed

is bounded by the sum of the latencies in Theorem 4.6 and 4.7.

Repeating the analysis of Thm. 4.3, we get the following:

Theorem 4.8 (Latency). Theorems 4.6 and 4.7 guarantee that the
expected ε-latency for all honest transactions (Def. 8) is at most r (β)
rounds for β < 0.5, where

r (β) := max

{
c1(β), c2(β)

Bv
DC

log

1

ε

}
,

where

c1(β) :=
5400(1 − β)

(1 − 2β)3 log
1−β
β

log

50

(1 − 2β)

c2(β) :=
54000

(1 − 2β)3
log

50

(1 − 2β) ,

Therefore the honest transactions are confirmed in

max

{
c1(β)D, c2(β)

Bv
C

log

1

ε

}
seconds.

5 SIMULATIONS

Theorem 4.8 provides a theoretical upper bound on the expected

latency, which matches the physical limit of propagation time up

to constant factors. Characterizing the exact constants is an inter-

esting research direction, but outside the scope of this paper. On

the other hand, one can empirically estimate the average latency

values by simulating the Prism protocol and its confirmation rule.

The purpose of this section is to conduct such a simulation in the

honest setting as well as a variety of adversarial settings.

Setup.We simulate a network withm = 1, 000 voter chains, in

which D ≈ ∆ = 1 sec. We run our proposer tree and each voter

tree at a rate of
¯f = 1 block /10 sec. Our simulations measure

the latency for transaction confirmation under three scenarios: no

attack, a balancing attack, and a censorship attack. By design, our

confirmation rule is simultaneously robust against the common

private Nakamoto attack [16], where the adversary withholds a

proposer block as well as corresponding forked voter blocks in

order to reverse a confirmed proposal block. In this section, we

show figures for an adversary deploying
˜β = 0.25 fraction of total

hash power, where
˜β denotes the fraction of hash power being

actually used for the attack (whereas β is the maximum tolerable

fraction of adversarial hash power, without losing consistency and

liveness). We set the confirmation reliability conservatively at ε =
e−20

. Experiments for additional parameter settings can be found

in Appendix J. We compare against the longest-chain protocol, for

the same block generation rate of 1 block per 10 seconds.

No Attack. We start by considering a setting where Prism’s

parameters are chosen to withstand an attacker of hash power

β , but the adversary is not actively conducting any attack. Since

the confirmation rule must still defend against β adversarial hash

power, latency depends on β . Honest nodes vote on the earliest-

seen proposer block, with results shown in Figure 11(a). In Bitcoin,

a confirmed transaction has to be deeper in the chain for larger β ;
in Prism, the voter blocks have to be deeper. We see that Prism’s

latency is significantly smaller than that of Nakamoto’s longest

chain protocol, and much closer to the physical limit. Note that

since there is no active adversary, double-spend transactions can

be resolved with the same latency as honest transactions.

Balancing Attack. In a balancing attack, the goal of the ad-

versary is to prevent confirmation by casting all of its votes so

as to compete with the current proposer leader block. We begin

this attack with two competing proposer blocks at the same level

(say level 0), A and B. Consider an honest (non-double-spent) trans-

action that is referred by at least one of the two proposer blocks.

The adversary’s goal is to prevent the system from confirming this

transaction by balancing votes on the two proposer blocks. That

is, if block A currently has the majority of votes and the adversary

mines a voter block in the ith voter tree: (1) If voter tree i has not
yet voted on level 0, the adversary votes on the minority block, B.
(2) If voter tree i voted on level 0 for block B, the adversary appends
its block to the longest chain, thereby reinforcing the vote for the

losing proposer block. (3) If voter tree i voted on level 0 for block A,

12



(a) (b) (c)

Figure 11: (a) Confirmation latency of honest transactions with no attack. The x-axis denotes the maximum tolearble fraction

of adversarial hash power β . (b) Transaction latency in the presence of an adversarial balancing attack from
˜β = 0.25 active

hash power, for honest and double-spent transactions. (c) Confirmation latency under a censorship attack with
˜β = 0.25 hash

power. Honest and double-spent transactions have the same latency, both for Prism and for longest chain.

the adversary tries to fork the ith voter tree to vote for B instead. If

there is no vote for B in the voter tree, the adversary creates one. If

there is already a fork voting for B, the adversary appends to this

fork. The balancing attack is one of the most severe and natural

attacks on Prism. The results of this simulation are shown in Figure

11(b). Notice that the latency of honest transaction confirmation

increases by a factor of about 2x under a balancing attack, but does

not affect the longest-chain protocol. Despite this, Prism’s latency

is still far lower than that of the longest-chain protocol.

Next, we consider double-spent transactions. The latency for

double-spent transactions is the same as honest transactions in the

longest-chain protocol, so the blue curve does not change. However,

the double-spent transaction latency for Prism grows substantially,

approaching that of the longest-chain protocol. Indeed, as the ac-

tive
˜β fraction approaches 0.5, Prism’s latency on double-spent

transactions in the presence of attacks on the confirmation process

actually exceeds that of the longest-chain protocol, as discussed in

Section 4.1 and seen in Figures 20 and 21.

CensorshipAttack Finally, we consider an attacker whose goal

is simply to slow down the confirmation of blocks by proposing

empty proposer and voter blocks. This has two effects: (1) it delays

the creation of a proposer block referencing the transaction block

containing the transaction, and (2) it delays the confirmation of

such a proposer block by delaying the creation of votes on the

proposer tree. The results of this attack are shown in Figure 11(c).

The censorship attack adds a delay of between 15-20 seconds to

Prism’s confirmation delay compared to the non-adversarial setting.

The effect is smaller for the longest-chain protocol, since the only

delay comes from delaying the insertion of a transaction into a

block. Under a censorship attack, double-spent transactions have

the same latency as honest ones.
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A PSEUDOCODE

Algorithm 1 Prism: Mining

1: procedureMain( )

2: Initialize()

3: while True do

4: header, Ppf , Cpf = PowMining()

5: // Block contains header, parent, content and merkle proofs

6: if header is a tx block then

7: block ← ⟨header, txParent, txPool, Ppf , Cpf ⟩
8: else if header is a prop block then

9: block ← ⟨header, prpParent, unRf T xBkPool, Ppf , Cpf ⟩
10: else if header is a block in voter blocktree i then
11: block ← ⟨header, vtParent [i], votesOnPrpBks[i], Ppf , Cpf ⟩
12: BroadcastMessage(block ) ▷ Broadcast to peers

13: procedure Initialize( ) ▷ All variables are global

14: // Blockchain data structure C = (prpT ree, vtT ree)
15: prpT ree ← дenesisP ▷ Proposer Blocktree

16: for i ← 1 to m do

17: vtT ree[i] ← дenesisM_i ▷ Voter i blocktree
18: // Parent blocks to mine on

19: prpParent ← дenesisP ▷ Proposer block to mine on

20: for i ← 1 to m do

21: vtParent [i] ← дenesisM_i ▷ Voter tree i block to mine on

22: // Block content

23: txPool ← ϕ ▷ Tx block content: Txs to add in tx bks

24: unRf T xBkPool ← ϕ ▷ Prop bk content1: Unreferred tx bks

25: unRf PrpBkPool ← ϕ ▷ Prop bk content2: Unreferred prp bks

26: for i ← 1 to m do

27: votesOnPrpBks(i) ← ϕ ▷ Voter tree i bkbk content

28: procedure PowMining( )

29: while True do

30: txParent ← prpParent
31: // Assign content for all block types/trees

32: for i ← 1 to m do vtContent [i] ← votesOnPrpBks[i]
33: txContent ← txPool
34: prContent ← (unRf T xBkPool, unRf PrpBkPool )
35: // Define parents and content Merkle trees

36: parentMT ←MerklTree(vtParent, txParent, prpParent )
37: contentMT ←MerklTree(vtContent, txContent, prContent )
38: nonce← RandomString(1

κ
)

39: // Header is similar to Bitcoin

40: header← ⟨ parentMT .root, contentMT .root, nonce ⟩
41: // Sortition into different block types/trees

42: if Hash(header) ≤ mfv then ▷ Voter block mined

43: i ← ⌊Hash(header)/fv ⌋ and break ▷ on tree i
44: else if mfv <Hash(header) ≤ mfv + ft then
45: i ←m + 1 and break ▷ Tx block mined

46: else if mfv + ft < Hash(header) ≤ mfv + ft + fp then

47: i ←m + 2 and break ▷ Prop block mined

// Return header along with Merkle proofs

48: return ⟨header, parentMT .proof(i ), contentMT .proof(i)⟩
49:

50: procedure ReceiveBlock(B) ▷ Get block from peers

51: if B is a valid transaction block then

52: txPool .removeTxFrom(B)

53: unRf T xBkPool .append(B)
54: else if B is a valid block on i th voter tree then
55: vtT ree[i].append(B) and vtT ree[i].append(B.ancestors())
56: if B.chainlen > vtParent [i].chainlen then

57: vtParent [i] ← B and votesOnPrpBks (i ).update(B)
58: else if B is a valid prop block then

59: if B.level == prpParent .level+1 then

60: prpParent ← B

61: for i ← 1 to m do ▷ Add vote on level ℓ on allm trees

62: votesOnPrpBks(i)[B.level ] ← B

63: else if B.level > prpParent .level+1 then

64: // Miner doesnt have block at level prpParent .level+1

65: ReqestNetwork(B.parent)

66: prpT ree[B.level].append(B), unRf PrpBkPool .append(B)
67: unRf T xBkPool .removeTxBkRefsFrom(B)

68: unRf PrpBkPool .removePrpBkRefsFrom(B) ‘

69: procedure ReceiveTx(tx)

70: if tx has valid signature then txPool .append(B)
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Algorithm 2 Prism: Tx confirmation

1: procedure IsTxConfirmed(tx )
2: Π ← ϕ ▷ Array of set of proposer blocks

3: for ℓ ← 1 to prpT ree .maxLevel do

4: votesNdepth ← ϕ
5: for i in 1 to m do

6: votesNdepth[i] ← GetVoteNDepth(i, ℓ)
7: if IsPropSetConfirmed(votesNdepth) then ▷ Refer Def. 4.5

8: Π[ℓ] ← GetProposerSet(votesNdepth) ▷ Refer Eq. 15

9: else break

10: // Ledger list decoding: Check if tx is confirmed in all ledgers

11: prpBksSeqs ← Π[1] × Π[2] × · · · × Π[ℓ] ▷ outer product

12: for prpBks in prpBksSeqs do
13: ledдer = BuildLedger(prpBks )
14: if tx is not confirmed in ledдer then return False

return True ▷ Return true if tx is confirmed in all ledgers

15: // Return the vote of voter blocktree i at level ℓ and depth of the vote

16: procedure GetVoteNDepth(i, ℓ)
17: voterMC ← vtT ree[i].LonдestChain()
18: for voterBk in voterMC do

19: for prpBk in voterBk .votes do
20: if prpBk .level = ℓ then

21: // Depth is #of children bks of voter bk on main chain

22: return (prpBk , voterBk .depth)

23: procedure BuildLedger(propBlocks ) ▷ Input: list of prop blocks

24: ledдer ← [] ▷ List of valid transactions

25: for prpBk in propBlocks do
26: r ef PrpBks ← prpBk .getReferredPrpBks()
27: // Get all directly and indirectly referred transaction blocks.

28: txBks ← GetOrderedTxBks(prpBk, r ef PrpBks)
29: for txBk in txBks do
30: txs ← txBk .getTxs() ▷ Txs are ordered in txBk
31: for tx in txs do
32: // Check for double spends and duplicate txs

33: if tx is valid w.r.t to ledдer then ledдer .append(tx )
34: return ledдer

35: // Return ordered list of confirmed transactions

36: procedure GetOrderedConfirmedTxs()

37: L← ϕ ▷ Ordered list of leader blocks

38: for ℓ ← 1 to prpT ree .maxLevel do

39: votes ← ϕ ▷ Stores votes from allm voter trees on level ℓ
40: for i in← 1 to m do

41: votesNDepth[i] ← GetVotes(i, ℓ)
42: if IsLeaderConfirmed(votesNDepth) then ▷ Refer 4.1

43: // Proposer block with maximum votes on level ℓ
44: L[ℓ] ← GetLeader(votesNDepth)
45: else break

return BuildLedger(L)

B NOTATION

Let Hi [r ] and Zi [r ] be the number of voter blocks mined by the honest nodes and by the adversarial node in

round r on the i-th voting tree respectively, where i = 1, 2, ..,m. Hi [r ],Zi [r ] are Poisson random variables with

means (1 − β)fv∆ and β fv∆ respectively. Similarly, Hp [r ],Zp [r ] are the numbers of proposer blocks mined

by the honest nodes and by the adversarial node in round r respectively; they are also Poisson, with means

(1 − β)fp∆ and β fp∆ respectively. Finally, H t [r ],Z t [r ] are the numbers of transaction blocks mined by the

honest nodes and by the adversarial node in round r respectively; they are also Poisson, with means (1− β)ft∆
and β ft∆ respectively. All the random variables are independent of each other.
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C BITCOIN BACKBONE PROPERTIES REVISITED

[9] defines three important properties of the Bitcoin backbone: common-prefix, chain-quality and chain-growth.

It was shown that, under a certain typical execution of the mining process, these properties hold, and the

properties are then used to prove the persistence and liveness of the Bitcoin transaction ledger. These three

properties, as well as the notion of a typical execution, were global, and defined over the entire time horizon.

While this is appropriate when averaging over time to achieve reliable confirmation, as for Bitcoin, it turns out

that for the analysis of fast latency of Prism, where the averaging is over voter chains, we need to formulate

finer-grained, local versions of these properties, localized at a particular round. Correspondingly, the event
under which these local backbone properties are proved is also local, in contrast to the event of typical

execution.

In this section, we will focus on a single Bitcoin blocktree, with a mining rate of
¯f per round, and we will

use the model and notations introduced in Section 2. In addition, we will use the following notation from [9]:

if C is a chain of blocks, then C ⌈k is the k-deep prefix of C, i.e. the chain of blocks of C with the last k blocks

removed. Additionally, given two chains C and C′, we say that C ⪯ C′ if C is a prefix of chain C′.

Definition C.1 (Common-prefix property). The k-deep common-prefix property holds at round r if the k-deep
prefix of the longest chain at round r remains a prefix of any longest chain in any future round.

Note that while the common-prefix property in [9] is parameterized by a single parameter k , the property
defined here is parameterized by two parameters k and r . It is a property that the prefix of the main chain at

round r remains permanently in the main chain in the future.

Definition C.2 (Chain-quality property). The (µ,k)-chain-quality property holds at round r if at most µ
fraction of the last k consecutive blocks on the longest chain C at round r are mined by the adversary.

The chain-quality property in [9] is parameterized by two parameters µ and k , however, the property defined
here is parameterized by three parameters µ, k and r .

Definition C.3 (Chain-growth property). The chain-growth property with parameters ϕ and s states that for
any s rounds there are at least ϕs blocks added to the main chain during this time interval.

We will now show that these three properties hold regardless of adversarial action, provided that certain

events on the honest and adversarial mining processes hold.

C.1 Modelling PoW block generation

In section 2, the hash computation of the users are modelled as a random oracle. We now further model the

PoW generation as follows: Let H [r ] and Z [r ] be the number of blocks mined by the honest nodes and by

the adversarial node in round r . From section 2, we know that H [r ],Z [r ] are Poisson random variables with

means (1 − β)fv∆ and β fv∆ respectively. Note that random variables {H [r ]}r ∈{0,rmax } , {Z [r ]}r ∈{0,rmax } are
independent of each other. We now define auxiliary random variables X [r ] and Y [r ] as follows: If at round r
an honest party mines at least one block, then X [r ] = 1 , otherwise X [r ] = 0. If at round r an honest party

mines exactly one block, then Y [r ] = 1, otherwise Y [r ] = 0. Let r ′ = k
2

¯f
. Define the following events:

E1

[
r − r ′, r

]
:=

⋂
a,b≥0

{
Y [r − r ′ − a, r + b] − Z [r − r ′ − a, r + b] > (1 − 2β)k

8

}
E2

[
r − r ′, r

]
:=

{
H

[
r − r ′, r

]
+ Z

[
r − r ′, r

]
< k

}
E3

[
r − r ′, r

]
:=

{
X

[
r − r ′, r

]
>

k

6

}
E [r − r ′, r ] := E1[r − r ′, r ] ∩ E2[r − r ′, r ] ∩ E3[r − r ′, r ]. (18)

As defined in Section 2, X [r − r ′, r ] and Y [r − r ′, r ] are the number of successful and uniquely successful

rounds respectively in the interval [r − r ′, r ], and Z [r − r ′, r ] is the number of blocks mined by adversary
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Figure 12: Round r is the first round that the k-deep prefix of the longest chain is changed. (This is

a slight modification of Figure 3 from [9].)

in the interval [r − r ′, r ]. Note that the honest users mine at least one block in a successful round and mine

exactly one block in a uniquely successful round. Therefore, the event E1 [r − r ′, r ] implies that the number

of uniquely successful rounds exceed the total blocks mined by the adversary by
(1−2β )k

8
blocks for all the

intervals containing the interval [r − r ′, r ]. Event E2 [r − r ′, r ] implies that the number successful rounds plus

the total number of blocks mined by the adversary in the interval [r − r ′, r ] is less than k . Event E3 [r − r ′, r ]
implies that the number of successful rounds in the interval [r − r ′, r ] at least k

6
.

To prove the common-prefix, chain-quality and chain-growth properties, we need the following two lemmas

from [9]:

Lemma C.4 (Lemma 6 [9]). Suppose the k-th block, b, of a longest chain C was mined by a honest node in a
uniquely successful round. Then the k-th block of a longest chain C′, at possibly a different round, is either b or
has been mined by the adversary.

Lemma C.5 (Lemma 7 [9]). Suppose that at round r1 the longest chain is of length n. Then by round r2 ≥ r1,
the longest chain is of length of least n + X [r1, r2].

Lemma C.6. Under the event E[r − r ′, r ], the last k consecutive blocks of the longest chain C at round r are
mined in at least r ′ consecutive rounds.

Proof. By definition we know that E2[r − r ′, r ] ⊇ E[r − r ′, r ]. Event E2[r − r ′, r ] implies that the total

number of blocks mined in interval [r − r ′, r ] is less than k . Therefore, the k-th deep block of chain C was

mined on or before round r − r ′. □

The chain-growth lemma stated below is the localized version of Theorem 13 from [9] and the proof is similar.

Lemma C.7 (Chain-growth). Under event E[r − r ′, r ], where r ′ = k
2

¯f
, the longest chain grows by at least k

6

blocks in the interval [r − r ′, r ].

Proof. From Lemma C.5, we know that the main chain grows by at leastX [r −r ′, r ] in the interval [r −r ′, r ].
Since E3[r − r ′, r ] ⊇ E[r − r ′, r ] implies X [r − r ′, r ] > k

6
and this completes the proof. □
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We modify the proofs of Lemma 14 and Theorem 15 of [9] by localizing it to a particular round in order to

prove our common-prefix property.

Lemma C.8 (Common-prefix). Under the event E[r1 − r ′, r1], where r ′ = k
2

¯f
, the k-deep common-prefix

property holds at round r1.

Proof. Consider a longest chain C1 in the current round r1 and a longest chain C2 in a future round r2,

which violates the common-prefix property, i.e., C ⌈k
1

⪯̸ C2. Let r be the smallest round r1 ≤ r ≤ r2 such that

there is a longest chain C′
2
such that C ⌈k

1
⪯̸ C′

2
. If r = r1, define C′

1
= C1; otherwise, define C′

1
to be a longest

chain at round r − 1. Note that C ⌈k
1
⪯ C′

1
. Observe that by our assumptions such an r is well-defined (since e.g.,

r2 is such a round, albeit not necessarily the smallest one); refer to Figure 12 for an illustration. Consider the

last block b∗ on the common prefix of C′
1
and C′

2
that was mined by an honest node and let r∗ be the round in

which it was mined (if no such block exists let r∗ = 0). Define the set of rounds S = {i : r∗ < i ≤ r }. We claim

Z [r∗, r ] ≥ Y [r∗, r ]. (19)

We show this by pairing each uniquely successful round in S with an adversarial block mined in S . For a
uniquely successful round u ∈ S , let ju be the position of the corresponding block i.e., its distance from the

genesis block. Consider the set

J := {ju : u is a uniquely successful round in S} .
Note that len(C′

1
) ≥ max J , because the honest node that mined the chain corresponding to max J position

will broadcast it. Since C′
2
is adopted at round r , it should be at least as long as C′

1
, i.e., len(C′

2
) ≥ len(C′

1
). As a

result, for every j ∈ J , there is a block in position j of either chain. We now argue that for every j ∈ J there is
an adversarial block in the j-th position either in C′

1
or in C′

2
mined after round r∗ because C ′

1
and C ′

2
contains

block b∗ which is mined by the honest users: if j lies on the common prefix of C′
1
and C′

2
it is adversarial by

the definition of r∗; if not, the argument follows from Lemma C.4.

We assume the event E[r1 − r ′, r1] occurs and under E2[r1 − r ′, r1] ⊇ E[r1 − r ′, r1], from Lemma C.6, the

k-deep block of the chain C1 was mined on or before round r1 − r ′ and this implies r∗ ≤ r1 − r ′. Under the
event E1[r1 − r ′, r1] we know that Y [r1 − r ′ −a, r1 +b] > Z [r1 − r ′ −a, r1 +b] for all a,b ≥ 0. Since r∗ < r1 − r ′,
Y [r∗, r ] > Z [r∗, r ], which contradicts Equation (19). □

We again modify the proof of Theorem 16 of [9] by localizing it to a particular round in order to prove our

chain-quality property.

Lemma C.9 (Chain-qality). Under the event E[r − r ′, r ], where r ′ = k
2

¯f
, the (µ,k)-chain quality property

holds at round r for µ = 7+2β
8

.

Proof. Let C be the longest chain at round r and denote the last k blocks in the chain C by C[−k] :=

[bk ,bk−1
, · · · ,b2,b1]. Now defineN ≥ k as the the least number of consecutive blocksC[−N ] := [bN ,bN−1, · · · ,b2,b1]

s.t block bN was mined by an honest user. Let block bN be mined in round r∗. If no such block exists then bN
is the genesis block and r∗ = 0. Now consider the interval S = {i : r∗ < i ≤ r } = [r∗, r ]. Let H be the number

of blocks mined by honest users in the interval [r∗, r ] and say H < (1 − µ)k . Then the number of blocks mined

by the adversary in the same interval is at least N − 1 − H . This implies Z [r∗, r ] ≥ N − 1 − H , so from the

chain-growth Lemma C.5, we have N − 1 ≥ X [r∗, r ]. Putting the last two statements together, we have

Z [r∗, r ] > X [r∗, r ] − (1 − µ)k . (20)

We assume the event E[r − r ′, r ] = E1[r − r ′, r ] ∩ E2[r − r ′, r ] ∩ E3[r − r ′, r ] occurs. Under E2[r − r ′, r ], from
Lemma C.6, the k-deep block of the chain C, bk , was mined before round r − r ′, and since block bN was mined

before block bk , we have r
∗ ≤ r − r ′. Under the event E1[r − r ′, r ], we know that

Y [r − r ′ − a, r + b] > Z [r − r ′ − a, r + b] + (1 − 2β)k
8

∀a,b ≥ 0.
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Since r∗ ≤ r − r ′ and X [r∗, r ] ≥ Y [r∗, r ], we obtain

X [r∗, r ] > Z [r∗, r ] + (1 − 2β)k
8

,

and this contradicts Equation (20) for µ =
7+2β

8
. Therefore in the interval [r∗, r ], at least (1 − µ)k blocks on

C[−N + 1] were mined by honest users. These blocks must be in C[−k] by definition of N . □

Since the common-prefix, chain-quality and chain-growth properties are all proved assuming the event

E[r −r ′, r ] occurs, a natural question is how likely is its occurrence? The next lemma shows that the probability

of it occurring approaches 1 exponentially as r ′ increases. This lemma will be heavily used in our analysis of

security and fast confirmation.

Lemma C.10. Let ¯f ≤ log(2−2β )
1−β .8 For any r , P (Ec [r − r ′, r ]) ≤ 4e−γ

¯f r ′ , where r ′ = k
2

¯f
and γ = 1

36
(1 − 2β)2.

Proof. The event Ec [r − r ′, r ] is a union of three events. We will upper bound the probability each of these

events separately and then use union bound.

Lemma C.11. For any r , P
(
Ec

1
[r − r ′, r ]

)
≤ 2e−

(1−2β )2 ¯f r ′
36 . Here r ′ = k

2
¯f
.

Proof. Let us restate the event E1 [r − r ′, r ] by substituting k = 2r ′ ¯f :

E1

[
r − r ′, r

]
:=

⋂
a,b≥0

{
Y [r − r ′ − a, r + b] − Z [r − r ′ − a, r + b] > (1 − 2β) ¯f r ′

4

}
.

Observe that the random variable Y [r − r ′ − a, r + b] − Z [r − r ′ − a, r + b] can be interpreted the position of

a 1-d random walk (starting at the origin) after r ′ + a + b steps. Here Y [r − r ′ − a, r + b], Z [r − r ′ − a, r + b]
are the number of steps taken in right and left direction respectively. The value of

¯f is chosen s.t the random

variablesY [r − r ′ − a, r + b] ∼ Bin(r ′+a+b,
¯f
2
) and as seen before Z [r − r ′ − a, r + b] ∼ Poiss((r ′+a+b) ¯f β);

the random walk has

¯f (1−2β )
2

positive bias per step. In this random walk analogy, event E1 [r − r ′, r ] implies

that the random walk is to the right of the point
(1−2β ) ¯f

4
after first r ′ steps and remains to the right of that

point in all the future steps. We analyze this event by breaking in into two events.

Define a new event D [r − r ′, r ] =
{
Y [r − r ′, r ] −Z [r − r ′, r ] < 1

3
(1 − 2β) ¯f r ′

}
. In our random walk analogy,

this event corresponds to a random walk which starts at the origin and is to the left of the point
1

3
(1 − 2β) ¯f r ′

after r ′ steps. We upper bound the probability of the event D [r − r ′, r ]:

P
(
D
[
r − r ′, r

] )
=P

(
Y
[
r − r ′, r

]
− Z

[
r − r ′, r

]
<

1

3

(1 − 2β) ¯f r ′
)

=P
(
Y
[
r − r ′, r

]
− Z

[
r − r ′, r

]
− 1

2

(1 − 2β) ¯f r ′ < −1

6

(1 − 2β) ¯f r ′
)

(a)
≤ e−γ1

¯f r ′ . (21)

The inequality (a) follows by applying Chernoff bound and the value of γ1 is
1

36
(1 − 2β). We will now use the

event D [r − r ′, r ] to calculate the probability of the event Ec
1
[r − r ′, r ]:

P
(
Ec

1

[
r − r ′, r

] )
= P

(
Ec

1

[
r − r ′, r

]
∩ D

[
r − r ′, r

] )
+ P

(
Ec

1

[
r − r ′, r

]
∩ Dc

[
r − r ′, r

] )
≤ P

(
D
[
r − r ′, r

] )
+ P

(
Ec

1

[
r − r ′, r

] �� Dc [
r − r ′, r

] )
(a)
≤ e−γ1

¯f r ′ + e−γ2
¯f r ′

≤ 2e−γ
¯f r ′ . (22)

8
We will assume this constraint in all our results without stating it explicitly.
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In our randomwalk analogy, the event

{
Ec

1
[r − r ′, r ] ⋂ Dc [r − r ′, r ]

}
corresponds to a positive biased random

walk Y [r − r ′, r ]−Z [r − r ′, r ] starting to the right of the point 1

3

¯f (1− 2β)r ′ and hitting the point 1

4

¯f (1− 2β)r ′
in a future round. This event is analyzed in Lemma G.3 and using this lemma we obtain inequality (a) with

γ = γ2 =
1

36
(1 − 2β)2. □

Lemma C.12. For any r , P
(
Ec

2
[r − r ′, r ]

)
≤ e−

¯f r ′ . Here k = r ′ ¯f .

Proof. Let us restate the event E2 [r − r ′, r ] by substituting k = 2r ′ ¯f :

E2

[
r − r ′, r

]
:=

{
X

[
r − r ′, r

]
+ Z

[
r − r ′, r

]
< 2

¯f r ′
}
.

As defined in Section 2, the total number of block mined by the honest users in interval [r −r ′, r ] isH [r −r ′, r ] ∼
Poiss((1 − β) ¯f , r ′) and we have H [r − r ′, r ] ≥ X [r − r ′, r ]. Using this we have

P
(
Ec

2

[
r − r ′, r

] )
= P

(
H

[
r − r ′, r

]
+ Z

[
r − r ′, r

]
≥ 2

¯f r ′
)

= P
(
Poiss((1 − β) ¯f r ′) + Poiss(β ¯f r ′) ≥ 2

¯f r ′
)

= P
(
Poiss( ¯f r ′)) ≥ 2

¯f r ′
)

≤ e−
¯f r ′ .

The last inequality follows from Chernoff bound
9
. □

Lemma C.13. For any r , P
(
Ec

3
[r − r ′, r ]

)
≤ e−

¯f r ′
36 . Here r ′ = k

2
¯f
.

Proof. Let us restate the event E3 [r − r ′, r ] by substituting k = 2r ′ ¯f :

E3

[
r − r ′, r

]
:=

{
X

[
r − r ′, r

]
>

¯f r ′

3

}
.

We know that Y [r − r ′, r ] ≤ X [r − r ′, r ] and Y [r − r ′, r ] ∼ Bin(r ′,
¯f
2
). Thus we have

P
(
Ec

3

[
r − r ′, r

] )
= P

(
X

[
r − r ′, r

]
<

¯f r ′

3

)
≤ P

(
Y
[
r − r ′, r

]
<

¯f r ′

3

)
= P

(
Bin(r ′,

¯f

2

) <
¯f r ′

3

)
≤ e−

¯f r ′
36 .

The last inequality also follows from Chernoff bound. □

Combining Lemmas C.11, C.12 and C.13, we obtain

P
(
Ec

[
r − r ′, r

] )
≤ P

(
Ec

1

[
r − r ′, r

] )
+ P

(
Ec

2

[
r − r ′, r

] )
+ P

(
Ec

3

[
r − r ′, r

] )
≤ 2e−

(1−2β )2 ¯f r ′
36 + e−

¯f r ′ + e−
¯f r ′
36

≤ 4e−
(1−2β )2 ¯f r ′

36 .

□

9
https://github.com/ccanonne/probabilitydistributiontoolbox/blob/master/poissonconcentration.pdf
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D TOTAL ORDERING FOR PRISM: PROOFS OF THEOREMS 4.1 AND 4.2

In Appendix C, we proved three chain properties – chain-growth, common-prefix and chain-quality – for the

Bitcoin backbone under events defined in Equation (18). The voter blocktrees in Prism also follow the longest

chain protocol, hence these three chain properties will directly hold for each of them voter blocktree under

the corresponding events:

Similar to section C.1, let Hj [r ] and Z j [r ] be the number of blocks mined by the honest nodes and by the

adversarial node in round r on the ith voter tree for j ∈ [m]. From section 2 and the sorition technique, we

know that Hj [r ],Z j [r ] are Poisson random variables with means (1 − β)fv∆ and β fv∆ respectively. Note that

random variables {Hj [r ]}r ∈{0,rmax }, j ∈[m], {Z j [r ]}r ∈{0,rmax }, j ∈[m] are independent of each other. We now

define auxiliary random variables X j [r ] and Yj [r ] as follows: If at round r an honest party mines at least one

block on voter tree j, then X j [r ] = 1 , otherwise X j [r ] = 0. If at round r an honest party mines exactly one

block on voter tree i , then Yj [r ] = 1, otherwise Yj [r ] = 0. Let r ′ = k
2

¯f
.

E1, j
[
r − r ′, r

]
:=

⋂
a,b≥0

{
Yj [r − r ′ − a, r + b] − Z j [r − r ′ − a, r + b] >

(1 − 2β)k
8

}
E2, j

[
r − r ′, r

]
:=

{
Hj

[
r − r ′, r

]
+ Z j

[
r − r ′, r

]
< k

}
E3, j

[
r − r ′, r

]
:=

{
X j

[
r − r ′, r

]
>

k

6

}
Ej [r − r ′, r ] := E1, j [r − r ′, r ] ∩ E2, j [r − r ′, r ] ∩ E3, j [r − r ′, r ]. (23)

Note the similarity between the above events and events defined in Equation (18).We know thatX j [r − r ′, r ] and
Yj [r − r ′, r ] are the number successful and uniquely successful rounds respectively in the interval [r − r ′, r ] on
the blocktree j . Along the same lines, Z j [r − r ′, r ] is the number of voter blocks mined by the adversary on the

blocktree j in the interval [r − r ′, r ]. Events E1, j [r − r ′, r ], E2, j [r − r ′, r ] and E3, j [r − r ′, r ] have corresponding
interpretation of the events E1 [r − r ′, r ], E2 [r − r ′, r ] and E3 [r − r ′, r ].
Typical event: For a given r ′, define the following event:

Ej (r ′) :=
⋂
r̃ ≥r ′

⋂
0≤r ≤rmax

Ej [r − r̃ , r ] . (24)

Lemma D.1. For any j, P
(
Ecj (r

′)
)
≤ 4r2

max
e−γ

¯fv r ′ , where γ = 1

36
(1 − 2β)2.

Proof. Use Lemma C.10 and apply union bound. □

Let the first proposer block at level ℓ appear in round Rℓ . We will now prove common-prefix and chain-quality

for the leader block sequence defined in Equation (11).

Common prefix property: The common-prefix property of the leader sequence gives us the confirmation
policy. We derive this property using the common prefix and the chain-quality properties of the voter blocks.

Refer Figure 13.

Lemma D.2 (Common-prefix). At round r ≥ Rℓ , if every voter blocktree has a voter block mined by the honest
users after round Rℓ which is at least k-deep, then w.p 1 − εk , the leader block sequence up to level ℓ is permanent
i.e,

LedSeq ℓ(r ) = LedSeq ℓ(rmax).
Here εk ≤ 4mr2

max
e−γk/2 and γ = 1

36
(1 − 2β)2.

Proof. Fix a voter blocktree j and denote its k-deep voter block in round r by bj . From the definition in

Equation (24) and common-prefix Lemma C.8 we know for under the event Ej (r ′), for r ′ = k
2

¯fv
, the k-deep

voter block and its ancestors permanently remain on the main chain of voter blocktree j . From Lemma D.1 we

know that P
(
Ecj (r

′)
)
≤ εk

m . Therefore, the k-deep voter block on the voter blocktree j is permanent w.p 1 − εk
m .

On applying union bound we conclude all the k-deep voter block on them voter blocktrees are permanent w.p
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CP: Leader sequence

Voter blocktrees
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.  .  .  .  .  .

Chain Quality (CQ)Bitcoin backbone Common Prefix (CP)

Proposer blocktree

Figure 13: Dependencies of properties required to prove the common-prefix property of the leader

sequence.

1 − εk . Each of these voter blocks, bj ’s, are mined by the honest users after round Rℓ . Therefore, by the voter

mining policy defined in Section 3, the main chain of the voter blocktree j until voter block bj has votes on
proposer blocks on all the levels ℓ′ ≤ ℓ and all these votes are permanent w.p 1 − εk . Therefore, for each level

ℓ′ ≤ ℓ hasm permanent votes and this implies that the leader block at level ℓ′ is also permanent w.p 1− εk . □

Therefore, to confirm leader blocks with 1 − ε security, votes on all them voter blocktrees should be at least

k = 2

γ log
4mrmax

ε deep. The natural question is: how long does it take to have (at least) k-deep votes on allm
voter blocktrees? The next lemma answers this question.

Lemma D.3. By round Rℓ + rk , wp 1 − ε ′k , all the voter blocktrees have an honest voter block mined after round

Rℓ and is at least k-deep, where rk ≤ 64k
(1−2β ) ¯fv

and ε ′k ≤ 8mr2

max
e−

γ ¯fv rk
8 .

Proof. Fix a blocktree j . Using the chain growth Lemma C.7 under the event Ej (rk ), we know that the main

chain of voter blocktree j grows by k1 ≥ rk ¯fv
3

voter blocks. Next, using the chain-quality Lemma C.9 under the

second event Ej
(
k1

2
¯fv

)
, we know that at least

1−2β
8

fraction of these k1 voter blocks are mined by the honest

users and the earliest of these voter block, say bj , is at least k2-deep, where k2 ≥ (1−2β )k1

8
≥ (1−2β ) ¯fv rk

24
:= k . It

is important to note that the depth k2 is observable by all the users. The probability of failure of either of these

two events is

P

(
Ecj (rk )

⋃
Ecj

(
k1

2
¯fv

))
≤ P

(
Ecj (rk )

)
+ P

(
Ecj

(
k1

2
¯fv

))
(a)
≤ P

(
Ecj (rk )

)
+ P

(
Ecj

( rk
6

))
(b)
≤ 2P

(
Ecj

( rk
6

))
(c)
≤

ε ′k
m
. (25)

From Lemma D.1, we see that as r ′ decreases, P
(
Ecj (r

′)
)
increases, and because

k1

2
¯fv
≥ rk

6
, we have the

inequality (a). The inequality (b) also follows by the same logic. The last inequality (c) is given by Lemma D.1.

Now applying union bound on Equation (25) overm blocktree gives us the required result. □

Proof of Theorem 4.1:
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Proof. From Lemma D.3 we know that by round Rℓ + r (ε), all the voter blocktrees will have a k-deep
honest voter blocks wp at least 1 − ε

2

10
for k ≥ 2

γ log
8mr 2

max

ε . Now applying Lemma D.2 for k ≥ 2

γ log
8mr 2

max

ε ,

we obtain that all these honest voter blocks are permanent w.p 1 − ε
2
. On combining these two, we obtain that

by round Rℓ + r (ε) the leader block sequence up to level ℓ is permanent w.p 1 − ε . □

Worst Case vs Average Case: The confirmation policy in Lemma D.3 is stated for the worst case adversarial

attack: when there are two (or more) proposer blocks at a given level have equal number of votes. Consider

an ‘average case’ scenario with two proposer blocks at a level, where the first block has 2m/3 votes and the

second block asm/3 votes. In this scenario one can intuitively see that we don’t need to guarantee permanence

of all them votes but a weaker guarantee suffices: permanence ofm/6 of the 2m/3 votes of first block. This

weaker guarantee can be achieved within a few rounds and translates to short latency in Prism.

Corollary D.4. Bitcoin’s latency is the time required to mine a single honest 1

ε -deep block on a voter chain

of Prism and it is lesser than 2304

¯fv (1−2β )2 log
8r 2

max

ε rounds to provide 1 − ε reliability to confirm blocks and the
transactions in it.

Definition D.5 (Leader-sequence-quality ). The (µ,k)-leader-sequence-quality property holds at round r if at
most µ fraction of the last k consecutive leader blocks on the proposer blocktree at round r are mined by the

adversary.

Similar to section C.1, let Hp [r ] and Zp [r ] be the number of blocks mined by the honest nodes and by the

adversarial node on proposer tree in round r . From section 2 along with sortition technique, we know that

Hp [r ],Zp [r ] are Poisson random variables with means (1 − β)fv∆ and β fv∆
11

respectively. Note that ran-

dom variables {Hp [r ]}r ∈{0,rmax } , {Z
p [r ]}r ∈{0,rmax } are independent of each other. We now define auxiliary

random variables Xp [r ] and Yp [r ] as follows: If at round r an honest party mines at least one block on the

proposer tree, then Xp [r ] = 1 , otherwise Xp [r ] = 0. If at round r an honest party mines exactly one block on

the proposer tree, then Yp [r ] = 1, otherwise Yp [r ] = 0. Let r ′ = k
2

¯f
.

Let us define the following events on the proposer blocktree:

E
p
1

[
r − r ′, r

]
:=

⋂
a,b≥0

{
Yp [r − r ′ − a, r + b] − Zp [r − r ′ − a, r + b] > (1 − 2β)k

8

}
E
p
2

[
r − r ′, r

]
:=

{
Hp [

r − r ′, r
]
+ Zp

[
r − r ′, r

]
< k

}
E
p
3

[
r − r ′, r

]
:=

{
Xp [

r − r ′, r
]
>

k

6

}
Ep [r − r ′, r ] := E

p
1
[r − r ′, r ] ∩ Ep

2
[r − r ′, r ] ∩ Ep

3
[r − r ′, r ]. (26)

We know that Xp [r − r ′, r ] and Yp [r − r ′, r ] are the number of users in successful and uniquely successful

rounds respectively in the interval [r − r ′, r ] on proposer blocktree, and Zp [r − r ′, r ] is the number of proposer

blocks mined by adversary in the interval [r − r ′, r ]. These events have corresponding interpretation of the

events defined in Equations (18) and (23).

Lemma D.6 (Leader-seqence-qality). The (µ,k)-leader-sequence-quality property holds at round r for
µ =

7+2β
8

w.p at least 1 − 4r2

max
e−(1−2β )2k/72.

Proof. Unlike the longest chain in Bitcoin, the leader sequence in Prism does not form a chain. Therefore,

one cannot directly use Lemma C.9 and we need to adapt its proof to prove the required property here.

10
8mr 2

max
e
− γ

¯fv
8

64

γ ¯fv (1−2β ) log

8mr 2

max

ε
= 8mr 2

max
e
− 8

1−2β log

8mr 2

max

ε < ε
2
.

11fv = fp
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Round 𝑟Round 𝑟∗

Level ℓLevel ℓ∗ Level ℓ − 𝑘 − 1

𝐻 honest leader blocks𝐻′ honest leader blocks and
𝐻′ adversarial proposer blocks

Leader blocks

ℓ − ℓ∗ − 1 −𝐻 − 𝐻′ adversarial leader blocks.

Adversarial leader blocks Honest leader blocks

Figure 14: The leader blocks in levels [ℓ∗, ℓ].

Let r be the current round and ℓ be the last level on the proposer blocktree which has proposer blocks

at round r . Consider the k consecutive leader blocks on levels [ℓ − k, ℓ] := {ℓ − k + 1, · · · , ℓ} on the leader

sequence LedSeqℓ(r ) and define:

ℓ∗ := max

(
˜ℓ ≤ ℓ − k + 1 s .t the honest users mined the first proposer block on level

˜ℓ
)

Let r∗ be the round in which the first proposer block was mined on level ℓ∗ and define the interval S := {r :

r∗ < i ≤ r } = [r∗, r ]. From the definition of ℓ∗ we have the following two observations:

(1) The adversary has mined at least one proposer block on all levels in [ℓ∗, ℓ − k + 1].
(2) All the proposer blocks on levels [ℓ∗, ℓ] are mined in the interval S because there are no proposer

blocks on level ℓ∗ before round r∗ and hence no user can mine a proposer block on a level greater

than ℓ∗ before round r∗.
Let H be the number of honest leader blocks on the levels [ℓ − k, ℓ] and say

H < (1 − µ)k . (27)

LetH ′ be the number of honest leader blocks on the levels [ℓ∗, ℓ−k]. The adversary has mined ℓ−ℓ∗−1−H −H ′
leader blocks in the interval S . From our first observation, we know that the number of proposer blocks mined

by the adversary on the levels [ℓ∗, ℓ − k] which are not leader blocks is at least H ′, and from our second

observation, these proposer blocks are mined in the interval S . Therefore, the number of proposer blocks mined

by the adversary in the interval S satisfies

Zp [r∗, r ] ≥ (ℓ − ℓ∗ − H − H ′ − 1) + H ′

≥ ℓ − ℓ∗ − 1 − H
(From Equation (27)) > ℓ − ℓ∗ − 1 − (1 − µ)k . (28)

Refer Figure 14 for an illustration. From the chain growth Lemma C.7, we know that ℓ − ℓ∗ − 1 ≥ Xp [r∗, r ] and
combining this with Equation (28) gives us

Zp [r∗, r ] > Xp [r∗, r ] − (1 − µ)k . (29)

Let r ′ := k
2

¯fv
. Define an event Ep (r ′) :=

⋂
r̃ ≥r ′

⋂
r ≤rmax

Ep [r − r̃ , r ] and assume the event E p (r ′) occurs.
Under the event E

p
1
[r − r ′, r ] ⊇ E p (r ′), we know that

Yp [r − r ′ − a, r + b] > Zp [r − r ′ − a, r + b] + (1 − 2β)k
8

∀a,b ≥ 0.
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The first proposer block on the level ℓ is mined before round r . Under the event E
p
2
[r − r ′, r ] ⊇ Ep (r ′), from

Lemma C.6, the first proposer block on level ℓ − k + 1 was mined before round r − r ′, and hence r∗ ≤ r − r ′.
This combined with Xp [r∗, r ] ≥ Yp [r∗, r ], gives us

Xp [r∗, r ] > Zp [r∗, r ] + (1 − 2β)k
8

,

and this contradicts Equation (29) for µ =
7+2β

8
. Therefore on the levels [ℓ − k, ℓ], at least 1−2β

8
fraction of

the leader blocks are mined by honest users. From Lemma D.1, we know that the event E p (r ′) occurs w.p
1 − 4r2

max
e−γk/2, where γ = 1

36
(1 − 2β)2, and this completes the proof. □

The leader sequence quality defined in D.5 is parameterized by two parameters r and k , whereas its coun-
terpart definition of chain quality in [9], is parameterized only by a single parameter k . Even though our

definition of ‘quality’ is a weaker, we show that it is suffices to ensure liveness.

Proof of Theorem 4.2:

Proof. Let k := 2048

(1−2β )3 log( 32mrmax

ε ) and k1 := 8k
1−2β . Using Lemma D.6 we know that w.p at least 1 − ε/4,

the last k1 leader blocks have at least k honest leader blocks. From Lemma C.6 and D.1, w.p at least 1 − ε/4, the
deepest of thesek honest leader block was proposed before the round r− k

2
¯fv
. Here

k
2

¯fv
= 1024

(1−2β )3 ¯fv
log( 32mrmax

ε )
and now using Theorem 4.1, this deepest honest leader block is permanent w.p 1 − ε/4. Therefore, the honest
transaction will be permanently added to the blockchain after k1 proposer blocks are mined. Using chain

growth Lemma C.7, we know that the k1 proposer blocks will be mined in no more than
3k1

¯fv
rounds w.p 1− ε/4.

Therefore, w.p 1 − ε , the transaction will be part of the permanent leader sequence in

3k1

¯fv
=

3 × 2
14

(1 − 2β)3 ¯fv
log

32mrmax

ε
rounds. (30)

Refer Figure 15 for an illustration. Note that the constants in Equation (30) have not be optimized for the sake

of readability. The scaling w.r.t 1 − 2β , ¯fv and log
1

ε is the main take away. □

E FAST LIST CONFIRMATION FOR PRISM: PROOF OF THEOREM 4.5 AND 4.6

E.1 Voter chain properties

In Appendix D, we proved the common-prefix and the leader-sequence-quality properties by requiring the

typical event defined in Equation (24) to hold for every voting chain, i.e. at themicroscopic scale. The typicality of
27



each such event was obtained by averaging over rounds and as a consequence the confirmation of leader blocks

with 1 − ε guarantee required averaging over O(log
1

ε ) rounds. In this section we obtain faster confirmation

time by relaxing the notion of typicality to a notion of macroscopic typicality, one which concerns the mining

processes of a large fraction of the voter chains. This event guarantees macroscopic versions of the chain-

growth, common-prefix and chain-quality properties. That is, these properties are guaranteed to be satisfied

by a large fraction of the voter chains, but not all. These macroscopic properties of the voting chains turn out

to be sufficient to allow fast confirmation. For this section, we will define:

γ :=
1

36

(1 − 2β)2

c1 :=
1 − 2β

16

rmin :=
2 log

200

γ c1

γ ¯fv

kmin :=
4

γ
log

200

γc1

ρr ′ := max

(
c1

1 + 4
¯fvr ′
,
(1 − 2β)c1

1 + 32 logm

)
δk := max

(
c1

1 + 2k
,
(1 − 2β)c1

1 + 32 logm

)
εm := r2

max
e
− (1−2β )c

1
m

2+64 logm . (31)

Lemma E.1 (Macroscopic Typicality). The macroscopic typical event T defined below occurs with probability
1 − εm .

T[r − r ′, r ] :=


1

m

m∑
j=1

1
(
Ej [r − r ′, r ]) ≥ 1 − δk


T :=

⋂
0≤r ≤rmax,r ′≥rmin

T[r − r ′, r ],

where r ′ = k
2

¯fv
. Note that δk = ρr ′ .

Proof. For a fixed r , r ′, the indicator random variables 1
(
Ecj [r − r ′, r ]

)
are identical and independent

∀j ∈ [m]. The mean of the random variable 1
(
Ecj [r − r

′, r ]
)
is µ, and it is at most 4e−γ

¯fv r ′
by Lemma C.10.

Using Chernoff bound
12

for Bernoulli random variables, ∀a ≥ 0, we have

P
{ 1

m

m∑
j=1

1
(
Ecj [r − r

′, r ]
)
≥ µ + a

}
≤ e
− ma2

a+2µ

(1)
⇒P

{ 1

m

m∑
j=1

1
(
Ecj [r − r

′, r ]
)
≥ 4e−γ

¯fv r ′ + a
}
≤ e
− ma2

a+4e−γ ¯fv r ′

(2)
⇒P

{ 1

m

m∑
j=1

1
(
Ecj [r − r

′, r ]
)
≥ (δ + 1)4e−γ ¯fv r ′

}
≤ e−4me−γ ¯fv r ′ δ 2

δ+2 . (32)

12
http://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf

28

http://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf


Step (1) follows because µ ≤ 4e−γ
¯fv r ′

, and step (2) is obtained by substituting a = δ4e−γ
¯fv r ′

. For r ′ ≥ rmin

13
,

we have
1

4
eγ

¯fv r ′ρr ′ > 10. On substituting δ = 1

4
eγ

¯fv r ′ρr ′ − 1 in Equation (32), for all values of r ′ ≥ rmin, we

get

P(Tc [r − r ′, r ]) = P
{ 1

m

m∑
j=1

1
(
Ecj [r − r

′, r ]
)
≥ ρr ′

}
≤ e
−mρr δ 2

(δ+1)(δ+2)

(a)
≤ e−mρr /2

(b)
≤ e
− (1−2β )c

1
m

2+64 logm .

The inequality (a) follows from because δ > 9 and inequality (b) follows because ρ ′r >
(1−2β )c1

1+32 logm . Since r , r ′

can take at most rmax values, the event Tc is a union of at most r2

max
Tc [r − r ′, r ] events. Using union bound

we prove that the event Tc occurs w.p at most εm = r
2

max
e
− (1−2β )c

1
m

2+64 logm
and this combined with δk = ρr ′ proves

the required result. □

Lemma E.2 (Macroscopic Chain-growth). Under the event T, for k ≥ kmin and r ′ = k
2

¯fv
, the longest chain

grows by at least k
6
blocks in the interval [r − r ′, r ] on at least 1 − δk fraction of voter blocktrees.

Proof. From the typicality Lemma E.1, we know that under the event T[r − r ′, r ] ⊇ T ,

1

m

m∑
j=1

1
(
Ej [r − r ′, r ]

)
≥ 1 − δk .

Applying Lemma C.7 on events Ej [r − r ′, r ] for j ∈ [m] gives us the required result. □

Lemma E.3 (Macroscopic Common-prefix). Under the event T, for k ≥ kmin and r ′ = k
2

¯fv
, the k-deep

common-prefix property holds at round r for at least 1 − δk fraction of voter blocktrees.

Proof. From the typicality Lemma E.1, we know that under the event T[r − r ′, r ] ⊇ T ,

1

m

m∑
j=1

1
(
Ej [r − r ′, r ]

)
≥ 1 − δk .

Applying Lemma C.8 on events Ej [r − r ′, r ] for j ∈ [m] gives us the required result. □

Lemma E.4 (Macroscopic Chain-qality). Under the event T, for k ≥ kmin and r ′ = k
2

¯fv
, the (µ,k)-chain

quality property holds at round r for µ = 7+2β
8

for at least 1 − δk fraction of voter blocktrees.

Proof. From the typicality Lemma E.1, we know that under the event T[r − r ′, r ] ⊇ T ,

1

m

m∑
j=1

1
(
Ej [r − r ′, r ]

)
≥ 1 − δk .

Applying Lemma C.7 on events Ej [r − r ′, r ] for j ∈ [m] gives us the required result. □

In Appendix D, we used microscopic properties of each voter chain to obtain the common-prefix and

the leader sequence quality properties for the blocktree. The voter chains require long interval of rounds

to individually satisfy the microscopic properties and that results in large latency. Here we change use a

different strategy: we use macroscopic properties of the voter chains to obtain the common-prefix and the

leader sequence quality properties. The voter chains satisfy macroscopic properties for short interval of rounds

and this directly translates to short latency.

13
The value of rmin was precisely chosen to satisfy this inequality.
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E.2 Fast list confirmation policy

We repeat the definitions from Section 4.5.1. Pℓ(r ) = {p1,p2...} is the set of proposer blocks at level ℓ at round
r . LetUℓ(r ) be the number of voter blocktrees which have not voted for any proposer block in the set Pℓ(r ).
Let V k

n (r ) be the number of votes at depth k or greater for proposer block pn in round r . Let V k
−n (r ) be the

number of votes at depth k or greater for proposer blocks in the subset Pℓ(r ) − {pn }. Note that V k
n (r ) and

V k
−n (r ) are observable quantities. The following lemma bounds the future number of votes on a proposer block.

Lemma E.5. With probability at least 1− εm , the number of votes on any proposer block pn in any future round
rf ≥ r , Vn (rf ), satisfies

Vn (r ) ≤ Vn (rf ) ≤ V n (r ),
where

Vn (r ) := max

k≥kmin

(V k
n (r ) − δkm)+, (33)

V n (r ) := Vn (r ) +
(
V−n (r ) − max

k≥kmin

(V k
−n (r ) − δkm)+

)
+Uℓ(r ). (34)

Proof. From the typicality Lemma E.1, we know that the typical event T occurs w.p 1 − εm . We will use

this to prove Vn (rf ) ≥ (V k
n (r ) − δkm)+ for all values of k ≥ kmin. For a fixed k , let r

′ = k
2

¯fv
. Under the event

T , from Lemma E.3, we know that the k-deep common-prefix property holds for at least 1 − δk fraction of

voter blocktrees. Therefore Vn (rf ) is at least (V k
n (r ) − δkm)+ for all rf ≥ r . Since this holds for all values of

k ≥ kmin, we have Vn (r ) := maxk≥kmin
(V k
n (r ) − δkm)+.

Following the same line of reasoning, V−n (r ) := maxk≥kmin
(V d
−n (r ) − δkm)+ is a lower bound on V−n (r ′).

Therefore, at most (V−n (r ) − V−n (r )) votes can be removed from proposer blocks in the set Pℓ(r ) − {pn } and
added to the proposer block pn . Also the Uℓ(r ) voter blocktrees which have not yet voted could also vote on

block pn . Combining these both gives us the upper bound on Vn (rf ). □

Any private block pprivate < Pℓ(r ) by definition has zero votes at round r . The future number of votes on

the proposer block pprivate w.p 1 − εm satisfies

Vprivate(rf ) ≤ V private(r ) :=m −
∑

pn ∈Pℓ (r )
Vn (r ) ∀rf ≥ r , (35)

because each proposer block pn has Vn (r ) permanent votes w.p 1 − εm and pprivate could potentially get the

rest of the votes.

Fast list confirmation policy: If maxn Vn (r ) > V private(r ), confirm the following proposer block list at

level ℓ:

Πℓ(r ) := {pi : V i (r ) > max

n
Vn (r )}. (36)

Figures 9 illustrate one such example. The definition of Πℓ(r ) is precisely designed to prevent private

proposer blocks from becoming the leader blocks in the future rounds.

Lemma E.6. If the proposer lists are confirmed for all levels ℓ′ ≤ ℓ by round r , then w.p 1 − εm , the final leader
sequence up to level ℓ satisfies

p∗ℓ′(rmax) ∈ Πℓ′(r ) ∀ℓ′ ≤ ℓ.
Proof. We prove by contradiction. Say the final leader block at level ℓ′ ≤ ℓ is p∗

ℓ′(rmax) = bi and bi < Πℓ′(r ).
Without loss of generality, let us assume proposer block p1 has the largest Vn (r ) in round r . We have

Vi (rf )
(a)
≤ V i (r )

(b)
< V

1
(r )
(c)
≤ V1(rf ) ∀rf ≥ r . (37)

The inequality (b) is by definition of Πℓ′(r ), and the inequalities (a) and (c) are due to confidence intervals from
Lemma E.5. Equation (37) gives usVi (rf ) < V1(r ′), and therefore the proposer blockbi cannot be the leader block
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in any future rounds rf ≥ r , which includes the final round rmax. Therefore, we havep
∗
ℓ′(rmax) ∈ Πℓ′(r ) ∀ℓ′ ≤ ℓ

and this proves the required result. □

Lemma E.6 proves that the proposer lists obtained via the fast list confirmation policy contains the final leader

blocks. The natural question is: how long does it take to satisfy the constraint for the fast list confirmation?

We answer this question next.

E.3 Latency

The first proposer block at level ℓ appears in round Rℓ . For ease of calculations we assume that the proposer

blocktree mining rate
¯fp = ¯fv . Define ∆0 :=

12rmin

1−2β .

Lemma E.7. By round r = Rℓ+∆r , for ∆r ≥ ∆0, w.p 1−εm , at least 1−4ρ∆r fraction of the voter blocktrees have

an honest voter block which is mined after round Rℓ and is at least k-deep on the main chain. Here k ≥ (1−2β ) ¯fv∆r
24

and is also greater than kmin.

Proof. From the typicality Lemma E.1, we know that the eventT occurs w.p 1−εm . Using the chain-growth

Lemma E.2 under the event T , we know that by round r , 1 − ρ∆r fraction of the voter blocktree’s main chain

grows by k1 ≥ ∆r ¯fv
3

voter blocks. Let r ′ = k1

2
¯fv
. Next, using chain-quality Lemma E.4 under the event T , we

know that for at least 1 − δk1
fraction of voter blocktrees, the deepest of these honest voter blocks, mined after

round Rℓ , is at least k-deep, where k ≥
(1−2β )k1

8
≥ (1−2β ) ¯fv∆r

24
. Therefore, at least 1 − ρ∆r − δk1

fraction of the

blocktrees have an honest voter block mined after round Rℓ which is at least k-deep on the main chain. The

constants satisfy δk1
= ρ ∆r

3

< 3ρ∆r and this completes the proof. It is important to note that the depth of votes

on all them voter blocktree are observable by the users. □

Define random variable Nℓ(r ) := |Pℓ(r )| as the number of proposer blocks on level ℓ at round r and let

c1 =
1−2β

16
and c2 := 16

¯fv (1−2β )3 .

Lemma E.8. The proposer list at level ℓ can be confirmed w.p 1 − εm in round r = Rℓ + ∆r for for ∆r ≥ ∆0 if

Case 1. Nℓ(Rℓ + ∆r ) + 1 <
c1

ρ∆r
, (38)

Or Case 2. ∆r = c2m.

Proof. Let us first consider Case 1. All the events here are 1 − εm probability events. From Lemma E.7, we

know that by round r = Rℓ + ∆r , at least 1 − 4ρ∆r fraction of voter blocktrees have k-deep votes on proposer

blocks in Pℓ(r ) where k ≥
(1−2β ) ¯fv∆r

24
. This implies

∑
pn ∈Pℓ (r )V

k
n (r ) ≥ m(1 − 4ρ∆r ) and from Lemma E.5, we

have ∑
pn ∈Pℓ (r )

Vn (r ) ≥ m(1 − 4ρ∆r − δk ), (39)

where the constant δk satisfies δk ≤
12ρ∆r
(1−2β ) . Without loss of generality we assume V

1
(r ) ≥ Vi (r ) ∀pi ∈ Pℓ(r ),

and therefore from Equation (39), we have

V
1
(r ) ≥ m

Nℓ(r )

(
1 −

16ρ∆r
1 − 2β

)
14. (40)

On the other hand, the upper bound on the votes on a private proposer block, pprivate, by Equation (35) is :

V private(r ) < m −
∑

pn ∈Pℓ (r )
Vn (r )

(a)
<
(1 − 2β)ρ∆r

16

, (41)

14
Note that this inequality is extremely weak.
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<latexit sha1_base64="/Ay5tqlgyerGRpST591tVjgFvos=">AAAB/3icbVBNS8NAEN34WetXVPDiJVgETyURQY9FLx6r2A9oY9lsJ+3SzSbsTsQSc/CvePGgiFf/hjf/jduPg7Y+GHi8N8PMvCARXKPrflsLi0vLK6uFteL6xubWtr2zW9dxqhjUWCxi1QyoBsEl1JCjgGaigEaBgEYwuBz5jXtQmsfyFocJ+BHtSR5yRtFIHXv/5i5rIzxgxmIZ5nkna4MQeccuuWV3DGeeeFNSIlNUO/ZXuxuzNAKJTFCtW56boJ9RhZwJyIvtVENC2YD2oGWopBFoPxvfnztHRuk6YaxMSXTG6u+JjEZaD6PAdEYU+3rWG4n/ea0Uw3M/4zJJESSbLApT4WDsjMJwulwBQzE0hDLFza0O61NFGZrIiiYEb/bleVI/KXtu2bs+LVUupnEUyAE5JMfEI2ekQq5IldQII4/kmbySN+vJerHerY9J64I1ndkjf2B9/gA6mZbe</latexit><latexit sha1_base64="/Ay5tqlgyerGRpST591tVjgFvos=">AAAB/3icbVBNS8NAEN34WetXVPDiJVgETyURQY9FLx6r2A9oY9lsJ+3SzSbsTsQSc/CvePGgiFf/hjf/jduPg7Y+GHi8N8PMvCARXKPrflsLi0vLK6uFteL6xubWtr2zW9dxqhjUWCxi1QyoBsEl1JCjgGaigEaBgEYwuBz5jXtQmsfyFocJ+BHtSR5yRtFIHXv/5i5rIzxgxmIZ5nkna4MQeccuuWV3DGeeeFNSIlNUO/ZXuxuzNAKJTFCtW56boJ9RhZwJyIvtVENC2YD2oGWopBFoPxvfnztHRuk6YaxMSXTG6u+JjEZaD6PAdEYU+3rWG4n/ea0Uw3M/4zJJESSbLApT4WDsjMJwulwBQzE0hDLFza0O61NFGZrIiiYEb/bleVI/KXtu2bs+LVUupnEUyAE5JMfEI2ekQq5IldQII4/kmbySN+vJerHerY9J64I1ndkjf2B9/gA6mZbe</latexit><latexit sha1_base64="/Ay5tqlgyerGRpST591tVjgFvos=">AAAB/3icbVBNS8NAEN34WetXVPDiJVgETyURQY9FLx6r2A9oY9lsJ+3SzSbsTsQSc/CvePGgiFf/hjf/jduPg7Y+GHi8N8PMvCARXKPrflsLi0vLK6uFteL6xubWtr2zW9dxqhjUWCxi1QyoBsEl1JCjgGaigEaBgEYwuBz5jXtQmsfyFocJ+BHtSR5yRtFIHXv/5i5rIzxgxmIZ5nkna4MQeccuuWV3DGeeeFNSIlNUO/ZXuxuzNAKJTFCtW56boJ9RhZwJyIvtVENC2YD2oGWopBFoPxvfnztHRuk6YaxMSXTG6u+JjEZaD6PAdEYU+3rWG4n/ea0Uw3M/4zJJESSbLApT4WDsjMJwulwBQzE0hDLFza0O61NFGZrIiiYEb/bleVI/KXtu2bs+LVUupnEUyAE5JMfEI2ekQq5IldQII4/kmbySN+vJerHerY9J64I1ndkjf2B9/gA6mZbe</latexit><latexit sha1_base64="/Ay5tqlgyerGRpST591tVjgFvos=">AAAB/3icbVBNS8NAEN34WetXVPDiJVgETyURQY9FLx6r2A9oY9lsJ+3SzSbsTsQSc/CvePGgiFf/hjf/jduPg7Y+GHi8N8PMvCARXKPrflsLi0vLK6uFteL6xubWtr2zW9dxqhjUWCxi1QyoBsEl1JCjgGaigEaBgEYwuBz5jXtQmsfyFocJ+BHtSR5yRtFIHXv/5i5rIzxgxmIZ5nkna4MQeccuuWV3DGeeeFNSIlNUO/ZXuxuzNAKJTFCtW56boJ9RhZwJyIvtVENC2YD2oGWopBFoPxvfnztHRuk6YaxMSXTG6u+JjEZaD6PAdEYU+3rWG4n/ea0Uw3M/4zJJESSbLApT4WDsjMJwulwBQzE0hDLFza0O61NFGZrIiiYEb/bleVI/KXtu2bs+LVUupnEUyAE5JMfEI2ekQq5IldQII4/kmbySN+vJerHerY9J64I1ndkjf2B9/gA6mZbe</latexit>

E [N`(R` + �r) + 1]
<latexit sha1_base64="c7J7rFO67vPtieuvtNfeiE1BVf4=">AAACHXicbVDLSsNAFJ34tr6iLt0Ei6AIJZGCLsUHuJIqthaaECbTm3bo5MHMjVBCfsSNv+LGhSIu3Ih/47TNwteBgcM593LnnCAVXKFtfxpT0zOzc/MLi5Wl5ZXVNXN9o6WSTDJoskQksh1QBYLH0ESOAtqpBBoFAm6DwenIv70DqXgS3+AwBS+ivZiHnFHUkm/W3YhiPwjy88IVEGLn0s9dEKLYvS7JvnsGAqkv9/YdV/JeHz3frNo1ewzrL3FKUiUlGr757nYTlkUQIxNUqY5jp+jlVCJnAoqKmylIKRvQHnQ0jWkEysvH6QprRytdK0ykfjFaY/X7Rk4jpYZRoCdHWdRvbyT+53UyDI+8nMdphhCzyaEwExYm1qgqq8slMBRDTSiTXP/VYn0qKUNdaEWX4PyO/Je0DmqOXXOu6tXjk7KOBbJFtskuccghOSYXpEGahJF78kieyYvxYDwZr8bbZHTKKHc2yQ8YH1/pWKJi</latexit><latexit sha1_base64="c7J7rFO67vPtieuvtNfeiE1BVf4=">AAACHXicbVDLSsNAFJ34tr6iLt0Ei6AIJZGCLsUHuJIqthaaECbTm3bo5MHMjVBCfsSNv+LGhSIu3Ih/47TNwteBgcM593LnnCAVXKFtfxpT0zOzc/MLi5Wl5ZXVNXN9o6WSTDJoskQksh1QBYLH0ESOAtqpBBoFAm6DwenIv70DqXgS3+AwBS+ivZiHnFHUkm/W3YhiPwjy88IVEGLn0s9dEKLYvS7JvnsGAqkv9/YdV/JeHz3frNo1ewzrL3FKUiUlGr757nYTlkUQIxNUqY5jp+jlVCJnAoqKmylIKRvQHnQ0jWkEysvH6QprRytdK0ykfjFaY/X7Rk4jpYZRoCdHWdRvbyT+53UyDI+8nMdphhCzyaEwExYm1qgqq8slMBRDTSiTXP/VYn0qKUNdaEWX4PyO/Je0DmqOXXOu6tXjk7KOBbJFtskuccghOSYXpEGahJF78kieyYvxYDwZr8bbZHTKKHc2yQ8YH1/pWKJi</latexit><latexit sha1_base64="c7J7rFO67vPtieuvtNfeiE1BVf4=">AAACHXicbVDLSsNAFJ34tr6iLt0Ei6AIJZGCLsUHuJIqthaaECbTm3bo5MHMjVBCfsSNv+LGhSIu3Ih/47TNwteBgcM593LnnCAVXKFtfxpT0zOzc/MLi5Wl5ZXVNXN9o6WSTDJoskQksh1QBYLH0ESOAtqpBBoFAm6DwenIv70DqXgS3+AwBS+ivZiHnFHUkm/W3YhiPwjy88IVEGLn0s9dEKLYvS7JvnsGAqkv9/YdV/JeHz3frNo1ewzrL3FKUiUlGr757nYTlkUQIxNUqY5jp+jlVCJnAoqKmylIKRvQHnQ0jWkEysvH6QprRytdK0ykfjFaY/X7Rk4jpYZRoCdHWdRvbyT+53UyDI+8nMdphhCzyaEwExYm1qgqq8slMBRDTSiTXP/VYn0qKUNdaEWX4PyO/Je0DmqOXXOu6tXjk7KOBbJFtskuccghOSYXpEGahJF78kieyYvxYDwZr8bbZHTKKHc2yQ8YH1/pWKJi</latexit><latexit sha1_base64="c7J7rFO67vPtieuvtNfeiE1BVf4=">AAACHXicbVDLSsNAFJ34tr6iLt0Ei6AIJZGCLsUHuJIqthaaECbTm3bo5MHMjVBCfsSNv+LGhSIu3Ih/47TNwteBgcM593LnnCAVXKFtfxpT0zOzc/MLi5Wl5ZXVNXN9o6WSTDJoskQksh1QBYLH0ESOAtqpBBoFAm6DwenIv70DqXgS3+AwBS+ivZiHnFHUkm/W3YhiPwjy88IVEGLn0s9dEKLYvS7JvnsGAqkv9/YdV/JeHz3frNo1ewzrL3FKUiUlGr757nYTlkUQIxNUqY5jp+jlVCJnAoqKmylIKRvQHnQ0jWkEysvH6QprRytdK0ykfjFaY/X7Rk4jpYZRoCdHWdRvbyT+53UyDI+8nMdphhCzyaEwExYm1qgqq8slMBRDTSiTXP/VYn0qKUNdaEWX4PyO/Je0DmqOXXOu6tXjk7KOBbJFtskuccghOSYXpEGahJF78kieyYvxYDwZr8bbZHTKKHc2yQ8YH1/pWKJi</latexit>

c1

p�r
<latexit sha1_base64="3DgKJBzbBqqMtm1O9O8NMDvYqmE=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL4tF8FQSEfRY1IPHCrYWmhA22027dLMJuxOhhHjxr3jxoIhX/4U3/43bNgdtfTDweG+GmXlhKrgGx/m2KkvLK6tr1fXaxubW9o69u9fRSaYoa9NEJKobEs0El6wNHATrpoqROBTsPhxdTfz7B6Y0T+QdjFPmx2QgecQpASMF9oEXKUJzGrhFnga5d80EkEAVRWDXnYYzBV4kbknqqEQrsL+8fkKzmEmggmjdc50U/Jwo4FSwouZlmqWEjsiA9QyVJGbaz6cfFPjYKH0cJcqUBDxVf0/kJNZ6HIemMyYw1PPeRPzP62UQXfg5l2kGTNLZoigTGBI8iQP3uWIUxNgQQhU3t2I6JCYSMKHVTAju/MuLpHPacJ2Ge3tWb16WcVTRITpCJ8hF56iJblALtRFFj+gZvaI368l6sd6tj1lrxSpn9tEfWJ8/JpiXVA==</latexit><latexit sha1_base64="3DgKJBzbBqqMtm1O9O8NMDvYqmE=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL4tF8FQSEfRY1IPHCrYWmhA22027dLMJuxOhhHjxr3jxoIhX/4U3/43bNgdtfTDweG+GmXlhKrgGx/m2KkvLK6tr1fXaxubW9o69u9fRSaYoa9NEJKobEs0El6wNHATrpoqROBTsPhxdTfz7B6Y0T+QdjFPmx2QgecQpASMF9oEXKUJzGrhFnga5d80EkEAVRWDXnYYzBV4kbknqqEQrsL+8fkKzmEmggmjdc50U/Jwo4FSwouZlmqWEjsiA9QyVJGbaz6cfFPjYKH0cJcqUBDxVf0/kJNZ6HIemMyYw1PPeRPzP62UQXfg5l2kGTNLZoigTGBI8iQP3uWIUxNgQQhU3t2I6JCYSMKHVTAju/MuLpHPacJ2Ge3tWb16WcVTRITpCJ8hF56iJblALtRFFj+gZvaI368l6sd6tj1lrxSpn9tEfWJ8/JpiXVA==</latexit><latexit sha1_base64="3DgKJBzbBqqMtm1O9O8NMDvYqmE=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL4tF8FQSEfRY1IPHCrYWmhA22027dLMJuxOhhHjxr3jxoIhX/4U3/43bNgdtfTDweG+GmXlhKrgGx/m2KkvLK6tr1fXaxubW9o69u9fRSaYoa9NEJKobEs0El6wNHATrpoqROBTsPhxdTfz7B6Y0T+QdjFPmx2QgecQpASMF9oEXKUJzGrhFnga5d80EkEAVRWDXnYYzBV4kbknqqEQrsL+8fkKzmEmggmjdc50U/Jwo4FSwouZlmqWEjsiA9QyVJGbaz6cfFPjYKH0cJcqUBDxVf0/kJNZ6HIemMyYw1PPeRPzP62UQXfg5l2kGTNLZoigTGBI8iQP3uWIUxNgQQhU3t2I6JCYSMKHVTAju/MuLpHPacJ2Ge3tWb16WcVTRITpCJ8hF56iJblALtRFFj+gZvaI368l6sd6tj1lrxSpn9tEfWJ8/JpiXVA==</latexit><latexit sha1_base64="3DgKJBzbBqqMtm1O9O8NMDvYqmE=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL4tF8FQSEfRY1IPHCrYWmhA22027dLMJuxOhhHjxr3jxoIhX/4U3/43bNgdtfTDweG+GmXlhKrgGx/m2KkvLK6tr1fXaxubW9o69u9fRSaYoa9NEJKobEs0El6wNHATrpoqROBTsPhxdTfz7B6Y0T+QdjFPmx2QgecQpASMF9oEXKUJzGrhFnga5d80EkEAVRWDXnYYzBV4kbknqqEQrsL+8fkKzmEmggmjdc50U/Jwo4FSwouZlmqWEjsiA9QyVJGbaz6cfFPjYKH0cJcqUBDxVf0/kJNZ6HIemMyYw1PPeRPzP62UQXfg5l2kGTNLZoigTGBI8iQP3uWIUxNgQQhU3t2I6JCYSMKHVTAju/MuLpHPacJ2Ge3tWb16WcVTRITpCJ8hF56iJblALtRFFj+gZvaI368l6sd6tj1lrxSpn9tEfWJ8/JpiXVA==</latexit>

N`(R` + �r) + 1
<latexit sha1_base64="xOMBZG7gyW6UU3RT465ewDwPJH0=">AAACBnicbZDLSsNAFIYnXmu9RV2KMFiESqEkIuiyqAtXUsVeoAlhMj1ph04uzEyEErpy46u4caGIW5/BnW/jtM1CW38Y+PjPOZw5v59wJpVlfRsLi0vLK6uFteL6xubWtrmz25RxKig0aMxj0faJBM4iaCimOLQTAST0ObT8weW43noAIVkc3athAm5IehELGCVKW555cONlDnA+Kt/lUHGugCviieOK7Zklq2pNhOfBzqGEctU988vpxjQNIVKUEyk7tpUoNyNCMcphVHRSCQmhA9KDjsaIhCDdbHLGCB9pp4uDWOgXKTxxf09kJJRyGPq6MySqL2drY/O/WidVwbmbsShJFUR0uihIOVYxHmeCu0wAVXyogVDB9F8x7RNBqNLJFXUI9uzJ89A8qdpW1b49LdUu8jgKaB8dojKy0RmqoWtURw1E0SN6Rq/ozXgyXox342PaumDkM3voj4zPHyCumDw=</latexit><latexit sha1_base64="xOMBZG7gyW6UU3RT465ewDwPJH0=">AAACBnicbZDLSsNAFIYnXmu9RV2KMFiESqEkIuiyqAtXUsVeoAlhMj1ph04uzEyEErpy46u4caGIW5/BnW/jtM1CW38Y+PjPOZw5v59wJpVlfRsLi0vLK6uFteL6xubWtrmz25RxKig0aMxj0faJBM4iaCimOLQTAST0ObT8weW43noAIVkc3athAm5IehELGCVKW555cONlDnA+Kt/lUHGugCviieOK7Zklq2pNhOfBzqGEctU988vpxjQNIVKUEyk7tpUoNyNCMcphVHRSCQmhA9KDjsaIhCDdbHLGCB9pp4uDWOgXKTxxf09kJJRyGPq6MySqL2drY/O/WidVwbmbsShJFUR0uihIOVYxHmeCu0wAVXyogVDB9F8x7RNBqNLJFXUI9uzJ89A8qdpW1b49LdUu8jgKaB8dojKy0RmqoWtURw1E0SN6Rq/ozXgyXox342PaumDkM3voj4zPHyCumDw=</latexit><latexit sha1_base64="xOMBZG7gyW6UU3RT465ewDwPJH0=">AAACBnicbZDLSsNAFIYnXmu9RV2KMFiESqEkIuiyqAtXUsVeoAlhMj1ph04uzEyEErpy46u4caGIW5/BnW/jtM1CW38Y+PjPOZw5v59wJpVlfRsLi0vLK6uFteL6xubWtrmz25RxKig0aMxj0faJBM4iaCimOLQTAST0ObT8weW43noAIVkc3athAm5IehELGCVKW555cONlDnA+Kt/lUHGugCviieOK7Zklq2pNhOfBzqGEctU988vpxjQNIVKUEyk7tpUoNyNCMcphVHRSCQmhA9KDjsaIhCDdbHLGCB9pp4uDWOgXKTxxf09kJJRyGPq6MySqL2drY/O/WidVwbmbsShJFUR0uihIOVYxHmeCu0wAVXyogVDB9F8x7RNBqNLJFXUI9uzJ89A8qdpW1b49LdUu8jgKaB8dojKy0RmqoWtURw1E0SN6Rq/ozXgyXox342PaumDkM3voj4zPHyCumDw=</latexit><latexit sha1_base64="xOMBZG7gyW6UU3RT465ewDwPJH0=">AAACBnicbZDLSsNAFIYnXmu9RV2KMFiESqEkIuiyqAtXUsVeoAlhMj1ph04uzEyEErpy46u4caGIW5/BnW/jtM1CW38Y+PjPOZw5v59wJpVlfRsLi0vLK6uFteL6xubWtrmz25RxKig0aMxj0faJBM4iaCimOLQTAST0ObT8weW43noAIVkc3athAm5IehELGCVKW555cONlDnA+Kt/lUHGugCviieOK7Zklq2pNhOfBzqGEctU988vpxjQNIVKUEyk7tpUoNyNCMcphVHRSCQmhA9KDjsaIhCDdbHLGCB9pp4uDWOgXKTxxf09kJJRyGPq6MySqL2drY/O/WidVwbmbsShJFUR0uihIOVYxHmeCu0wAVXyogVDB9F8x7RNBqNLJFXUI9uzJ89A8qdpW1b49LdUu8jgKaB8dojKy0RmqoWtURw1E0SN6Rq/ozXgyXox342PaumDkM3voj4zPHyCumDw=</latexit>

Case 1

Case 2

�max
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Figure 16: Sample paths of rv Nℓ(Rℓ + ∆r ) + 1 falling under Case 1 and Case 2 in Lemma E.8. The

values of
c1

ρ∆r
= min

(
1 + 4

¯fv∆r , 1 + 32 logm
)
, ∆0 =

12

1−2β rmin, ∆max = 8 logm.

where the inequality (a) follows from from Equation (39). From Equations (40) and (41), it is easy to see that

Nℓ(r ) + 1 <
16

(1 − 2β)ρ∆r
=⇒ V

1
(r ) > V private(r ),

and therefore, the proposer list at level ℓ can be confirmed by round r . This proves the claim in Case 1. Now let

us consider Case 2. From the proof of Theorem 4.1, we know that all them votes are permanent w.p 1 − ε for

r (ε) = 1024

¯fv (1 − 2β)3
log

8mrmax

ε
.

Substituting ε = εm in the above equation, we conclude that for r (εm ) = c2m, the upper bound on the number

of votes on private block, V private(r ) = 0 and V
1
(Rℓ + k) ≥ 1 > V private(Rℓ + k) w.p 1 − εm .

□

We now use the above Lemma E.8 to calculate the expected number of rounds to confirm the proposer block

list at level ℓ. For Case 1 (38) let us define the random variable:

R
stop

ℓ
:= min∆r > ∆0 s .t Nℓ(Rℓ + ∆r ) + 1 <

c1

ρ∆r
. (42)

Note that R
stop

ℓ
= ∞ if the inequality condition in Equation (42) is not satisfied for any ∆r . From Lemma

E.8, the proposer list at level ℓ can be confirmed in min(Rstop
ℓ
, c2m) rounds and the next lemma calculates its

expectation.

Lemma E.9. The proposer list at level ℓ can be confirmed by round Rℓ +min(Rstop
ℓ
, c2m) and we have

E[min(Rstop
ℓ
, c2m)] ≤

13

(1 − 2β)rmin +
48

¯fv (1 − 2β)3m3

.

Proof. The honest users do not mine new proposer blocks on level ℓ after round Rℓ , however, the adversary
could potentially mine new proposer blocks on level ℓ after round Rℓ . Therefore, the random variable Nℓ(Rℓ +
∆r ) satisfies

Nℓ(Rℓ + ∆r ) ≤ Hp [Rℓ] +W
p
ℓ
(Rℓ) + Z

p
ℓ
[Rℓ ,Rℓ + ∆r ].

(1) Hp [Rℓ] corresponds to the number of proposer blocks mined by the honest users on level ℓ. From

Section 2, we know that Hp [Rℓ] ∼ Poiss((1 − β) ¯fv ).
(2) W

p
ℓ
(Rℓ) denotes the upper bound on number of proposer blocks at level ℓ in store by the adversary by

round Rℓ . It is shown in Appendix G.1 thatW
p
ℓ
(Rℓ) ∼ Geometric(1 − 2β).
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(3) Z
p
ℓ
[Rℓ ,Rℓ + ∆r ] denotes the number of proposer blocks mined by the adversary at level ℓ in the

interval [Rℓ ,Rℓ + ∆r ]. From Section 2, we know that Z
p
ℓ
[Rℓ ,Rℓ + ∆r ] ∼ Poiss( ¯fv β∆r ).

The mean of random variable Nℓ(Rℓ + ∆r ) is affine in ∆r , and
c1

ρ∆r
is also affine in ∆r with a higher slope (by

design). Therefore, intuitively the expected value of R
stop

ℓ
defined in Equation (42) should be constant which

depends only on β . Two examples are illustrated in Figure 16. We now formalize this intuition. Let us define

∆max =
8 logm

¯fv (1−2β ) . We will calculate P(Rstop
ℓ
> ∆r ) separately for three intervals: [0,∆0], (∆0,∆max), [∆max,∞).

(1) Interval [0,∆0): Since Rstopℓ
≥ ∆0 by definition, we have

P(Rstop
ℓ
> ∆r ) = 1 ∀∆r ≤ ∆0. (43)

(2) Interval [∆max,∞): For ∆r ≥ ∆max, we have

{Rstop
ℓ
> ∆r } =

⋂
x ≤∆r

{
Nℓ(Rℓ + x) + 1 >

c1

ρ∆r

}
⊆

⋂
x ≤∆max

{
Nℓ(Rℓ + ∆max) + 1 >

c1

ρ∆max

}
= {Rstop

ℓ
> ∆max}. (44)

This implies

P{Rstop
ℓ
> ∆r } ≤ P{Rstopℓ

> ∆max} ∀∆max ≤ ∆r . (45)

(3) Interval (∆0,∆max): Using Equation (31), we have

c1

ρ∆r
= 1 + 4

¯fv∆r ∀∆r < ∆max. (46)

For ∆0 < ∆r < ∆max, we bound the tail event:

{Rstop
ℓ
> ∆r } =

⋂
x ≤∆r

{
Nℓ(Rℓ + x) + 1 >

c1

ρ∆r

}
⊆
{
Nℓ(Rℓ + ∆r ) + 1 >

c1

ρ∆r

}
⊆
{
Hp [Rℓ] +W

p
ℓ
(Rℓ) + Z

p
ℓ
[Rℓ ,Rℓ + ∆r ] + 1 >

c1

ρ∆r

}
=

{ (
Hp [Rℓ] − E[Hp [Rℓ]]

)
+W

p
ℓ
(Rℓ) +

(
Z
p
ℓ
[Rℓ ,Rℓ + ∆r ] − E[Z

p
ℓ
[Rℓ ,Rℓ + ∆r ]]

)
>

c1

ρ∆r
−
(
1 + E[Hp [Rℓ]] + E[Z

p
ℓ
[Rℓ ,Rℓ + ∆r ]]

)}
(a)
=

{ (
Hp [Rℓ] − E[Hp [Rℓ]]

)
+W

p
ℓ
(Rℓ) +

(
Z
p
ℓ
[Rℓ ,Rℓ + ∆r ] − E[Z

p
ℓ
[Rℓ ,Rℓ + ∆r ]]

)
> 1 + 4

¯fv∆r −
(
1 + (1 − β) ¯fv + β ¯fv∆r

)}
⊆
{ (

Hp [Rℓ] − E[Hp [Rℓ]]
)
+W

p
ℓ
(Rℓ) +

(
Z
p
ℓ
[Rℓ ,Rℓ + ∆r ] − E[Z

p
ℓ
[Rℓ ,Rℓ + ∆r ]]

)
>

(
¯fv∆r + ¯fv∆r + ¯fv∆r

)}
⇒ {Rstop

ℓ
> ∆r } ⊆ F1 ∪ F2 ∪ F3, (47)
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where the events are:

F1 :=
{
Hp [Rℓ] − E[Hp [Rℓ]] ≥ ¯fv∆r

}
F2 :=

{
W

p
ℓ
(Rℓ) ≥ ¯fv∆r

}
F3 :=

{
Z
p
ℓ
[Rℓ ,Rℓ + ∆r ] − E[Z

p
ℓ
[Rℓ ,Rℓ + ∆r ]] > ¯fv∆r

}
.

The equality (a) follows from Equation (46). Using Chernoff bounds, we upper bound the probabilities

of events the F1, F2 and F3:

P(F1) ≤ e−
¯fv ∆r

2 (48)

P(F2) ≤ (2β)
¯fv∆r ≤ e−

(1−2β ) ¯fv ∆r
2 (49)

P(F3) ≤ e−
¯fv ∆r

2 . (50)

From Equations (47), (48), (49) and (50), for ∆0 < ∆r < ∆max, we have

P({Rstop
ℓ
> ∆r }) ≤ e−

¯fv ∆r
2 + e−

(1−2β ) ¯fv ∆r
2 + e−

¯fv ∆r
2

≤ 3e−
(1−2β ) ¯fv ∆r

2 . (51)

From Equations (43), (45) and (51), we have

P(Rstop
ℓ
> ∆r ) ≤


1 ∆r ≤ ∆0

3e−
(1−2β ) ¯fv ∆r

2 ∆0 < ∆r < ∆max

3e−
(1−2β ) ¯fv ∆max

2 ∆max ≤ ∆r

(52)

Figure 17
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Using the above expression, the expectation of max(Rstop
ℓ
, c2m) is given by

E[min(Rstop
ℓ
, c2m)] =

∆max∑
∆r=0

P(Rstop
ℓ
> ∆r ) + c2mP(Rstopℓ

> ∆max)

≤ ∆0 +

∆max∑
∆r=∆0

P(Rstop
ℓ
> ∆r ) + 3c2me−(1−2β )fv∆max/2

≤ ∆0 +

∞∑
∆r=∆0

(
3e−

(1−2β ) ¯fv ∆r
2

)
+ 3c2me−4 logm

= ∆0 +
6e−

(1−2β ) ¯fv ∆
0

2

(1 − 2β) ¯fv
+

3c2

m3

≤ 12

(1 − 2β)rmin +
6

(1 − 2β) ¯fv
+

3c2

m3

E[min(Rstop
ℓ
, c2m)] ≤

13

(1 − 2β)rmin +
48

¯fv (1 − 2β)3m3

. (53)

□

Lemma E.9 upper bounds the expected number of rounds to confirm the proposer block list at level ℓ. However,

our goal in Lemma E.6 is to conform proposer list for all the levels ℓ′ ≤ ℓ. From Lemma E.8, we know that the

proposer list at level ℓ′ is confirmed by round Rℓ′ +min(Rstop
ℓ
, c2m). Therefore, all the proposer list up to level

ℓ are confirmed in the following number of rounds:

Rconfℓ :=max

ℓ′≤ℓ

(
Rℓ′ +min(Rstop

ℓ′ , c2m) − Rℓ
)

=max

ℓ′≤ℓ

(
min(Rstop

ℓ′ , c2m) − Dℓ′, ℓ
)
, (54)

where Dℓ′, ℓ = Rℓ − Rℓ′ . Expression (54) is a maximum of random variables associated with each level up to

level ℓ. It turns out max is dominated by random variable associated with level ℓ and in fact it’s expectation,

calculated in the next lemma, is very close to expectation of min(Rstop
ℓ
, c2m). We now calculate the expectation

of the random variable in expression (54).

Lemma E.10. All the proposer lists up to level ℓ will get confirmed in the following number of rounds in
expectation:

E[Rconf
ℓ
] ≤ 13

(1 − 2β)rmin +
256

(1 − 2β)6 ¯fvm2

≤ 2808

(1 − 2β)3 ¯fv
log

50

(1 − 2β) +
256

(1 − 2β)6 ¯fvm2

.

Proof. Let us define

F (
{
Dℓ′, ℓ

}
ℓ′≤ℓ) :=E

[
Rconfℓ |

{
Dℓ′, ℓ

}
ℓ′≤ℓ

]
=E

[
max

ℓ′≤ℓ

(
min(Rstop

ℓ′ , c2m) − Dℓ′, ℓ
) ��{Dℓ′, ℓ

}
ℓ′≤ℓ

]
≤∆0 + E

[
max

ℓ′≤ℓ

(
min(Rstop

ℓ′ − ∆0, c2m) − Dℓ′, ℓ
) ��{Dℓ′, ℓ

}
ℓ′≤ℓ

]
≤∆0 +

∑
ℓ′≤ℓ
E
[(

min(Rstop
ℓ′ − ∆0, c2m) − Dℓ′, ℓ

)
+

��Dℓ′, ℓ

]
. (55)

We bound each term in the summation the Equation (55) similar to steps used to Equations (53).
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E
[(

min(Rstop
ℓ′ − ∆0, c2m) − Dℓ′, ℓ

)
+

��{Dℓ′, ℓ
}
ℓ′≤ℓ

]
(56)

=

∆max∑
∆r=Dℓ′, ℓ+∆0

P(Rstop
ℓ′ > ∆r |

{
Dℓ′, ℓ

}
ℓ′≤ℓ) + (c2m − Dℓ′, ℓ)+P(R

stop

ℓ′ > ∆max |
{
Dℓ′, ℓ

}
ℓ′≤ℓ)

(a)
=

∆max∑
∆r=Dℓ′, ℓ+∆0

P(Rstop
ℓ′ > ∆r ) + (c2m − Dℓ′, ℓ)+P(R

stop

ℓ′ > ∆max)

≤
∞∑

∆r=Dℓ′, ℓ

(
3e−

(1−2β ) ¯fv ∆r
2

)
+ 3(c2m − Dℓ′, ℓ)+e−4 logm

≤ 6e−
(1−2β ) ¯fvDℓ′, ℓ

2

(1 − 2β) ¯fv
+

3(c2m − Dℓ′, ℓ)+
m4

. (57)

The inequality (a) follows because the random variable R
stop

ℓ′ is independent of proposer block mining on levels

other than ℓ′ and depends only on the mining on voting blocktrees and proposer blocks on level ℓ′. Using
Equation (57) in Equation (55) we get

F
({
Dℓ′, ℓ

}
ℓ′≤ℓ

)
≤∆0 +

∑
ℓ′≤ℓ

6e−
(1−2β ) ¯fvDℓ′, ℓ

2

(1 − 2β) ¯fv
+

3(c2m − Dℓ′, ℓ)+
m4

. (58)

Intuitively, if the first proposer block on every level is mined by the honest users then Dℓ′, ℓ is a geometric

random variable with mean
2(ℓ−ℓ′)

¯fv
i.e, linear in ℓ − ℓ′. Taking expectation on Equation (58) and substituting

Dℓ′, ℓ with
2(ℓ−ℓ′)

¯fv
would give us a finite bound. However this intuition is incorrect because the adversary

could present proposer blocks on multiple levels in the same round and thus the value of Dℓ′, ℓ depends on the

adversarial strategy. We overcome this problem by showing that irrespective of the adversary’s strategy, the

honest users will propose the first proposer blocks for sufficient number of levels.

Let levels {L1,L2, · · · ,Li , · · · ,Ln } be the levels lesser than ℓ on which the honest users presented the first

proposer block. Let Ln+1 = ℓ. Here Li ’s are a random variables and the first proposer block at level Li is produced
in round RLi . If the adversary produces the first proposer block at level ℓ′ for Li < ℓ′ < Li+1, then from the

monotonicity of the growth of the proposer blocktree, we have the following constraint RLi ≤ Rℓ′ ≤ RLi+1
.

Let us use this in Equation (58).

F
({
Dℓ′, ℓ

}
ℓ′≤ℓ

)
≤ ∆0 +

∑
ℓ′≤ℓ

6e−
(1−2β ) ¯fvDℓ′, ℓ

2

(1 − 2β) ¯fv
+

3(c2m − Dℓ′, ℓ)+
m4

.

≤ ∆0 +
∑
i ∈[n]

∑
Li<ℓ′≤Li+1

6e−
(1−2β ) ¯fvDℓ′, ℓ

2

(1 − 2β) ¯fv
+

3(c2m − Dℓ′, ℓ)+
m4

(a)
≤ ∆0 +

∑
i ∈[n]
(Li+1 − Li )

©­­«
6e−

(1−2β ) ¯fvDLn+1
,Li+1

2

(1 − 2β) ¯fv
+

3(c2m − DLn+1,Li+1
)+

m4

ª®®¬ . (59)

The inequality (a) follows because Rℓ′ ≤ RLi+1
. Let G j be i.i.d random variables s.t G j ∼ Geometric( ¯fv ). Since

the levels Li and Li+1 are mined by the honest users, we have DLi+1,Li ≥
∑Li+1

j=Li
G j and DLn+1,Li =

∑Ln+1

j=Li+1

G j .
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Using this in Equation (59), we get

F
({
Dℓ′, ℓ

}
ℓ′≤ℓ

)
≤ ∆0 +

∑
i ∈[n]
(Li+1 − Li )

©­­­«
6e−

(1−2β ) ¯fv
∑Ln+1

j=Li+1

Gj
2

(1 − 2β) ¯fv
+

3(c2m −
∑Ln+1

j=Li+1

G j )+
m4

ª®®®¬ .
We now take expectation over G j ’s gives us

E
[
F
({
Dℓ′, ℓ

}
ℓ′≤ℓ

) ��{Li }ni=1

]
≤ ∆0 +

∑
i ∈[n]
(Li+1 − Li )

(
6

(1 − 2β) ¯fv

(
1

1 + (1 − 2β)

) 2(Ln+1
−Li+1

)
¯fv

+

3(c2m − Ln+1−Li+1

¯fv
)+

m4

)
.

Since the honest user have 1 − β fraction of mining power, we have (Li+1 − Li ) ∼ Geometric(1 − β) and on

taking expectation over Li ’s we get:

E
[
Rconfℓ

]
= E

[
F
({
Dℓ′, ℓ

}
ℓ′≤ℓ

)]
≤ ∆0 +

1

1 − β
∑
i ∈[n]

©­­«
6

(1 − 2β) ¯fv

(
1

1 + (1 − 2β)

) (n−i )
¯fv +

(c2m − (n−i)¯fv
)+

m4

ª®®¬
≤ ∆0 +

1

1 − β

∞∑
i=0

(
6

(1 − 2β) ¯fv

(
1

1 + (1 − 2β)

) i
¯fv +

(c2m − i
¯fv
)+

m4

)
≤ 2

(1 − 2β)rmin + 2

(
6

(1 − 2β)2 ¯fv
+

128

(1 − 2β)6 ¯fvm2

)
≤ 13

(1 − 2β)rmin +
256

(1 − 2β)6 ¯fvm2

≤ 2808

(1 − 2β)3 ¯fv
log

50

(1 − 2β) +
256

(1 − 2β)6 ¯fvm2

.

□

F FAST CONFIRMATION FOR HONEST TRANSACTIONS: PROOF OF

THEOREM 4.7

This section uses ideas from the proof of Lemma D.6. Let the transaction tx enters the system
15

in round r and
let ℓ be the last level on the proposer blocktree which has proposer blocks at round r . Define

ℓ∗ := max

(
˜ℓ ≤ ℓ s .t the honest users mined the first proposer block on level

˜ℓ
)

Let r∗ be the round in which the first proposer block was mined on level ℓ∗. From the definition of ℓ∗ we have
the following two observations:

(1) All the proposer blocks on levels greater or equal to ℓ∗ are mined on or after round r∗ because by
definition there are no proposer blocks on level ℓ∗ before round r∗ and hence no user can mine a

proposer block on a level greater than ℓ∗ before round r∗.
(2) The adversary has mined at least one proposer block on all levels in [ℓ∗, ℓ].

Define ∆0 :=
12rmin

1−2β . For rf ≥ r , let us define the following event:

Arf =
{
Yp [r∗, rf − ∆0] − Zp [r∗, rf ] > 0

}
. (60)

15
As a part of a transaction block.
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Lemma F.1. If event Arf occurs, then the transactions tx is included in a block b which is proposed in round
r (b) ≤ rf − ∆0 and confirmed as a leader block by round rf .

Proof. From our first observation, Yp [r∗, rf −∆0] > Zp [r∗, rf ] implies that by round rf there exists a level

˜l ≥ ℓ∗ which has only one honest proposer block proposed in interval [r∗, rf − ∆0]. Our second observation

says that the adversary has mined a proposer block on all levels in [ℓ∗, ℓ] and therefore, we have
˜ℓ > ℓ. From

Lemma E.9, the single proposer block at level
˜ℓ is confirmed as a final leader block of its level w.p 1 − εm by

round rf . Since this proposer block was mined after round r , it will include the transaction tx . □

Let us define the following random variable:

Rf := min rf ≥ r s .t Arf occurs.

Lemma F.2.

E[Rf − r ] ≤
24(1 − β)rmin

(1 − 2β)2
≤ 2592

(1 − 2β)3 ¯fv
log

50

(1 − 2β) . (61)

Proof. Consider the following random walk

Wrf := Yp [r∗ + ∆0, rf ] − Zp [r∗, rf − ∆0]. (62)

and a random variable V ∼ Bin(∆0, ¯fv/2) which is independent ofWrf . It is easy to see that Yp [r∗ + ∆0, rf ] −

Zp [r∗, rf − ∆0]
d
=Wrf −V in distribution. Therefore, event Arf impliesWrf > V and we have

Rf = min rf ≥ r s .t Wrf > V occurs.

The random walkWrf has a positive drift of
(1−2β ) ¯fv

2
. For a fixed value of V , the conditional expectation is

E[Rf − r∗ |V ] = ∆0 +
2V

(1 − 2β) ¯fv
.

Taking expectation on V , we get

E[Rf − r∗] = ∆0 +
∆0

1 − 2β
=

24(1 − β)rmin

(1 − 2β)2
. (63)

Since r∗ ≤ r , we have E[Rf − r ] ≤
24(1−β )rmin

(1−2β )2 . Therefore, the transaction tx is included in all the ledgers in

less than
24(1−β )rmin

(1−2β )2 rounds in expectation. Substituting rmin from (31) give us the required result. □

From Lemma F.1 and F.2, we conclude that a transaction, which is part of a transaction block mined in round

r , is referred by a proposer block at level (say) ℓ and the leader block at this level confirmed before round

r + 2592

(1−2β )3 ¯fv
log

50

(1−2β ) in expectation. This proves the main claim of Theorem 4.7.

G OTHERS

G.1 Reserve proposer blocks by the adversary

Say the honest users mine the first proposer block at level ℓ in round Rℓ . LetW
p
ℓ
(Rℓ) denote that the number

of hidden proposal blocks blocks on level ℓ by the adversary. In order to maximizeW
p
ℓ
(Rℓ), all these hidden

proposer blocks should have a common honest parent proposer block at level (say) ℓhonest linked via private

proposal blocks as shown in the Figure 18. The total number of reserve blocks is given by

W
p
ℓ
(Rℓ) = max

ℓhonest ≤ℓ
Zp [Rℓhonest + 1,Rℓ] − Yp [Rℓhonest + 1,Rℓ] + 1. (64)

The random variable Yp [Rℓhonest ,Rℓ] − Zp [Rℓhonest ,Rℓ] is a random walk in the variable ℓhonest with a

net drift of
(1−2β )fv

2
. The ratio of left drift to the right drift is 2β and from [2], we have
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Figure 18: Number of reserved blocks by the adversary on level ℓ in round Rℓ .

P(W p
ℓ
(Rℓ) > k) = P

(
max

ℓhonest ≤ℓ
Zp [Rℓhonest + 1,Rℓ] − Yp [Rℓhonest + 1,Rℓ] ≥ k

)
= (2β)k .

ThereforeW
p
ℓ
(Rℓ) ∼ Geometric(1 − 2β).

G.2 Random walk proofs

Consider the following event from Equation (18)

E1

[
r − r ′, r

]
:=

⋂
a,b≥0

{
Y [r − r ′ − a, r + b] − Z [r − r ′ − a, r + b] > (1 − 2β)k

8

}
,

for r ′ = k
2

¯fv
. The random variableW [r − r ′, r ] = Y [r − r ′, r ] − Z [r − r ′, r ] is a random walk with drift

(1−2β )f
2

.

Lemma G.1. IfW [r − r ′, r ] > c1k , for c2 < c1 we have

P
(
W [r − r ′, r + a] ≥ c2k ∀ a > 0

��W [r − r ′, r ] > c1k) = 1 − (2β)(c1−c2)k

= 1 − e log(2β )(c1−c2)k .

Proof. Refer [2]. □

If the random walk is to the right of c1k after r ′ steps, the above lemma calculates the probability of that the

random walk remains to the right of c2k in all future rounds.

Lemma G.2. IfW [r − r ′, r ] > c1k , for c2 < c1, then we have

P
(
W [r − r ′ − b, r ] ≥ c2k ∀ b > 0

��W [r − r ′, r ] > c1k) = 1 − (2β)(c1−c2)k

= 1 − e log(2β )(c1−c2)k .

Proof. Refer [2]. □

The above lemma is mathematically characterizing the same event as Lemma G.1.
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Lemma G.3. IfW [r − r ′, r ] > c1k ,then for c3 < c1, then we have

P
(
W [r − r ′ − b, r + a] ≥ c3k ∀ a > 0

��W [r − r ′, r ] > c1k
)
≥ 1 − 2(2β)(c1−c3)k/2

= 1 − 2e log(2β )(c1−c3)k/2

(a)
≥ 1 − 2e−(1−2β )(c1−c3)k/2.

Proof. Using c2 = (c1 − c3)/2 in the above two Lemmas G.1 and G.2, we get the required result. The

inequality (a) uses log 2β < 2β − 1 for β > 0. □

H THROUGHPUT OF BITCOIN

H.1 For β ≈ 0.5

Indeed, in order for Bitcoin to be secured against Nakamoto’s private attack [16] in that regime, it is necessary

that f ∆, the expected number of blocks mined per network delay round, approaches 0 so that very little forking

occurs among the honest nodes and the honest nodes can grow the longest chain faster than the adversary.

Note that for a given block size B, the throughput is bounded by:

f B = f ∆ · B/∆ = f ∆ · B/(B/C + D) < f ∆C tx/second

Hence, in the regime where β → 0.5, Bitcoin can only achieve a vanishing fraction of the network capacity.

H.2 For general β < 0.5

An upper bound on the worst case throughput (worst case over all adversary actions) is the rate at which the

longest chain grows when no adversary nodes mine. The longest chain grows by one block in a round exactly

when at least one honest block is mined. Hence the rate of growth is simply P(#blocks mined in round r > 0),
i.e.

1 − e−(1−β )f ∆ blocks per round, (65)

Notice that (65) is monotonically increasing in f ; hence to maximize throughput, we should choose as high a

mining rate as possible.

However, we are simultaneously constrained by security. For Bitcoin’s security, [9] shows that the main

chain must grow faster in expectation than any adversarial chain, which can grow at rates up to β f ∆ in

expectation. Hence we have the following (necessary) condition for security:

1 − e−(1−β )f ∆ > β f ∆. (66)

Equation (66) gives the following upper bound on f ∆, the mining rate per round:

f ∆ < ¯fBTC(β),

where
¯fBTC(β) is the unique solution to the equation:

1 − e−(1−β ) ¯f = β ¯f . (67)

This yields an upper bound on the throughput, in transactions per second, achieved by Bitcoin as:

λBTC ≤ [1 − e−(1−β ) ¯fBTC(β )]B/∆
= β ¯fBTC(β)B/∆, (68)

where the last equality follows from (67). Substituting in ∆ = B/C + D and optimizing for B, we get the

following upper bound on the maximum efficiency of Bitcoin :

¯λBTC ≤ β ¯fBTC(β),

achieved when B ≫ CD and ∆ ≫ D.
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Another upper bound on the throughput is obtained by setting f at the capacity limit: f = C/B (cf. section

(2)). Substituting into (65) and optimizing over B, this yields

¯λBTC ≤ 1 − eβ−1,

achieved when f ∆ = 1, B ≫ CD and ∆ ≫ D.
Combining the above two bounds, we get:

¯λBTC ≤ min

{
β ¯fBTC(β), 1 − eβ−1

}
This is plotted in Figure 8. Note that for large values of β , the first upper bound is tighter; this is a security-limited
regime, in which the throughput efficiency goes to zero as β → 0.5. This is a manifestation of the (well-known)

fact that to get a high degree of security, i.e. to tolerate β close to 0.5, the mining rate of Bitcoin must be small,

resulting in a low throughput. Bitcoin currently operates in this regime, with the mining rate one block per 10

minutes; assuming a network delay of 1 minute, this corresponds to a tolerable β value of 0.49 in our model.

For smaller β , the second upper bound is tighter, i.e. this is the communication-limited regime. The crossover

point is the value of β such that

1 − eβ−1 = β,

i.e., β ≈ 0.43.

I THROUGHPUT OF GHOST

The GHOST [25] protocol uses a different fork choice rule, which uses the heaviest-weight subtree (where

weight is defined as the number of blocks in the subtree), to select the main chain. To analyze the throughput

of GHOST, we first observe that when there are no adversarial nodes working, the growth rate of the main

chain of GHOST is upper bounded by the growth rate of the main chain under the longest chain rule. Hence,

the worst-case throughput of GHOST, worst-case over all adversary actions, is bounded by that of Bitcoin, i.e.

1 − e−(1−β )f ∆ blocks per round, (69)

(cf. (65)). Notice that once again, this bound is monotonically increasing in f and we would like to set f largest

possible subject to security and network stability constraints. The latter constraint gives the same upper bound

as (70) for Bitcoin:

¯λGHOST ≤ 1 − eβ−1. (70)

?? We now consider the security constraint on f . Whereas our security condition for Bitcoin throughput was

determined by a Nakamoto private attack (in which the adversary builds a longer chain than the honest party),

a more severe attack for GHOST is a balancing attack, analyzed in the next subsection. As shown in that

analysis, the balancing attack implies that a necessary condition on f for robustness against an adversary with

power β is given by:

β f ∆ < E[|H1[r ] − H2[r ]|], (71)

where H1[r ],H2[r ] are two independent Poisson random variables each with mean (1 − β)f ∆/2. Repeating the
same analysis as we did for Bitcoin, we get the following upper bound on the maximum efficiency of GHOST:

¯λGHOST ≤ β ¯fGHOST(β), (72)

where
¯fGHOST(β) is the value of f ∆ such that (71) is satisfied with equality instead of inequality.

Combining this expression with the network stability upper bound, we get:

¯λGHOST ≤ min

{
β ¯fGHOST(β), 1 − eβ−1

}
. (73)

The throughput is plotted in Figure 8. As in Bitcoin, there are two regimes, communication-limited for β small,

and security-limited for β large. Interestingly, the throughput of GHOST goes to zero as β approaches 0.5, just

like Bitcoin. So although GHOST was invented to improve the throughput-security tradeoff of Bitcoin, the

mining rate f still needs to vanish as β gets close to 0.5. The reason is that although GHOST is indeed secure

against Nakamoto private attacks for any mining rate f [25], it is not secure against balancing attacks for f
above a threshold as a function of β . When β is close to 0.5, this threshold goes to zero.
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I.1 Mining rate constraint

Similar to the balancing attack in [17], we would like to analyze its constraint on the mining rate f which in

turns constrains the throughput. The adversary strategy is to divide the work of honest users by maintaining

two forks:

(1) Say two blocks b1,b2 are mined over the main chain block b0 in the first round. Say the adversary mines

b1 and the honest nodes mine b2. The adversary will broadcast both these blocks (and all previous blocks)

to all the honest users. This is when the attack starts.

(2) At this time instance (say r = 1) all the honest nodes have the same view of the blocktree – which has two

main chains ending at blocks b1 and b2.

(3) The honest users are divided into two equal groups G1 and G2, mining over b1 and b2 respectively, each at

average rate (1 − β)f ∆/2 blocks per round each.

(4) The adversary’s goal is to maintain the forking - make sure that G1 chooses block b1 in its main chain,

whereas G2 chooses block b2 in its main chain. To do this, it divides its own resources into two equal

parts A1 and A2, each with average mining rate f ∆/2 blocks per round. The first part A1 mines only

(direct) children of block b1 and second part mines A2 (direct) children of block b2. Suppose at round r ,
H1[r ],H2[r ] ∼ Poiss(1 − β)f ∆/2) honest blocks are mined in subtree 1 (below b1) and subtree 2 (below b2)

respectively.

(5) Attack Strategy:
• If H1[r ] = H2[r ], then the adversary does nothing.

• If say H1[r ] is larger, then adversary releases H1[r ] −H2[r ] blocks that it has mined in subtree 2 (either

in private or just mined in this round). Vice versa for the case when H2[r ] is larger. This (re)balances
the weight of the two subtrees and the honest work is again split in the next round.

(6) Analysis: The expected number of blocks the adversary needs to release in subtree 1 per round is E[(H2[r ]−
H1[r ])+]. A necessary condition for this attack to not be able to continue indefinitely with non-zero

probability is

β f ∆ < E[(H2[r ] − H1[r ])+]/2,

J ADDITIONAL SIMULATIONS

Here we show our simulations from Section 5 under additional parameter settings. First, we consider an active

adversary of hash power
˜β = 0.3 and

˜β = 0.15 with confirmation reliability ε = e−20
in Figure 19. Notice that

for
˜β = 0.3, the latency of confirming double-spent transactions exceeds that of the longest-chain protocol, as

explained in Section 4. The numeric latency values of the double-spent transaction curve are colored green to

clarify which numbers belong to which curve.

Since ε = e−20 ≈ 2.1 × 10
−9

is fairly conservative (this corresponds to a latency on the order of 1 day at

Bitcoin’s current settings of 1 block every 10 minutes with β = 0.4), we also consider a weaker confirmation

guarantee of ε = e−10 ≈ 4.5 × 10
−5
. The results for this weaker confirmation reliability are shown in Figure 20.

As expected, all confirmation times are reduced, both for Bitcoin and for Prism. Another key difference relates

to double-spent transaction latency under balancing attacks. As ε grows, Prism’s latency overtakes that of the

longest-chain protocol for smaller values of β . (Recall that ˜β denotes the current fraction of hash power that is

actively launching the attack, while β is the maximum tolerable fraction of adversarial hash power against

which the system is secure.) This observation is expected. Prism’s latency does not grow significantly as ε
changes; notice the similarity in Prism’s numeric latency values between Figures 19 and 20. However, as ε
decreases, it significantly increases the latency of the longest-chain protocol.

To illustrate this effect more explicitly, Figure 21 shows the latency of Prism and the longest-chain protocol

as we vary ε for a fixed β = 0.4 and
˜β = 0.3. Notice that indeed, Prism’s latency changes very little as ε scales,

whereas the longest-chain latency grows much faster. Additionally, we observe that censorship attacks do

not appear to significantly affect latency compared to the non-adversarial setting, whereas balancing attacks

can incur a much higher latency than the longest-chain protocol, with an especially pronounced difference at

small values of ε . This disparity becomes less notable for smaller values of
˜β , as seen in the earlier plots.

42



Balancing attack Censorship attack

Active adversary
˜β = 0.3

Balancing attack Censorship attack

Active adversary
˜β = 0.15

Figure 19: Active adversary at confirmation reliability ε = e−20
.
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Balancing attack Censorship attack

Active adversary
˜β = 0.3

Balancing attack Censorship attack

Active adversary
˜β = 0.25

Balancing attack Censorship attack

Active adversary
˜β = 0.15

Figure 20: Active adversary at confirmation reliability ε = e−10
.

Non-adversarial setting Balancing attack Censorship attack

Figure 21: Latency vs. ε for a non-adversarial setting, a balancing attack, and a censorship attack

when β = 0.4 and the active adversarial hash power
˜β = 0.3.
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