
Hashcash- A Denial of ServiceCounter-Measure

AdamBack
e-mail: adam@cypherspace.org

1stAugust2002

Abstract

Hashcashwasoriginally proposedasa mechanismto throttlesystematicabuseof un-meteredinternetresources
suchasemail,andanonymousremailersin May 1997. Five yearson, this papercapturesin oneplacethe various
applications,improvementssuggestedand relatedsubsequent publications, and describesinitial experience from
experimentsusinghashcash.

ThehashcashCPUcost-functioncomputesa token which canbeusedasa proof-of-work. Interactive andnon-
interactive variantsof cost-functionscanbe constructedwhich canbe usedin situationswherethe server canissue
a challenge(connectionorientedinteractive protocol),andwhereit cannot (wherethecommunicationis store–and–
forward,or packet oriented)respectively.

KeyWords: hashcash, cost-functions

1 Intr oduction

Hashcash[1] wasoriginally proposedasa mechanism to throttlesystematicabuseof un-meteredinternetresources
suchasemail, andanonymous remailersin May 1997. Five yearson, this papercaptures in oneplacethe various
applications, improvementssuggestedandrelatedsubsequentpublications,anddescribes initial experiencefrom ex-
periments usinghashcash.

ThehashcashCPU cost-function computesa tokenwhich canbeusedasa proof-of-work. Interactive andnon-
interactive variants of cost-functionscanbe constructedwhich canbe usedin situationswherethe server canissue
a challenge (connectionoriented interactive protocol), andwhereit cannot (where thecommunicationis store–and–
forward, or packetoriented) respectively.

At the time of publicationof [1] the authorwas not awareof the prior work by Dwork andNaor in [2] who
proposeda CPU pricing function for the applicationof combatting junk email. Subsequently applications for cost-
functionshave beenfurther discussedby JuelsandBrainardin [3]. JakobssonandJuelsproposea dualpurposefor
thework spentin a cost-function: to in additionperform anotherwiseusefulcomputationin [4].

2 Cost-Functions

A cost-function shouldbe efficiently verifiable,but parameterisablyexpensive to compute. We usethe following
notationto definea cost-function.

In thecontext of cost-functionswe useclient to refer to theuserwho mustcompute a token (denoted
�

) usinga
cost-function MINT() which is usedto createtokensto participatein a protocol with a server. We usethetermmint
for thecost-functionbecauseof theanalogybetweencreatingcosttokensandmintingphysicalmoney.

The server will checkthe valueof the token usingan evaluation function VALUE(), andonly proceedwith the
protocol if thetokenhastherequiredvalue.

Thefunctionsareparameterisedby theamount of work � that theuserwill have to expend on averageto mint a
token.

With interactive cost-functions, theserver issuesachallenge � to theclient– theserverusestheCHAL ��� function
to compute thechallenge. (Thechallengefunction is alsoparameterisedby thework factor.)

1

�� � �
	 CHAL ����
���� serverchallenge function� 	 MINT ����� mint tokenbasedonchallenge� 	 VALUE � � � tokenevaluation function

With non-interactivecost-functionstheclientchosesit’s own challenge or random startvaluein theMINT() func-
tion, andthereis noCHAL() function.� � 	 MINT ����
���� mint token� 	 VALUE � � � tokenevaluationfunction

Clearlyanon-interactivecost-function canbeusedin aninteractive setting,whereas theconverseis notpossible.

2.1 Publicly Auditable, Probabilistic Cost� A publicly auditable cost-functioncanbeefficiently verifiedby any third partywithout accessto any trapdoor
or secretinformation. (Whenwe saypublicly auditable we meanimplicitly that thecost-function is efficiently
publicly auditablecomparedto thecostof minting thetoken,ratherthanauditablein theweaker sensethatthe
auditor could repeat thework doneby theclient.)� A fixedcostcost-function takesa fixedamount of resourcesto compute. Thefastestalgorithm to mint a fixed
costtokenis adeterministic algorithm.� A probabilistic costcost-function is onewherethecostto theclientof mintingatokenhasapredictableexpected
time,butarandomactualtimeastheclientcanmostefficientlycomputethecost-functionbystartingatarandom
startvalue.Sometimestheclientwill getlucky andstartcloseto thesolution.

There aretwo typesof probabilistic costboundedprobabilisticcostandunboundedprobabilistic cost.

– An unboundedprobabilistic costcost-function,canin theorytake forever to compute, though theproba-
blity of takingsignificantlylongerthanexpecteddecreasesrapidly towardszero. (An example would be
thecost-functionof beingrequired to throw a headwith a fair coin; in theorytheusercouldbeunlucky
andendup throwing many tails, but in practicetheprobability of not throwing a headfor � throws tends
towards� rapidlyas ������� �"!#�%$& � �(' � .)

– With a boundedprobabilistic costcost-function thereis a limit to how unlucky the client canbe in it’s
searchfor the solution; for example wherethe client is expectedto searchsomekey spacefor a known
solution;thesizeof thekey spaceimposesanupperbound onthecostof findingthesolution.

2.2 Trapdoor-free

A disadvantageof known solutioncost-functionsis that thechallenger cancheaplycreatetokens of arbitrary value.
This precludespublic auditwheretheservermayhave a conflict of interests,for example in webhit metering, where
theservermayhaveaninterestto inflatethenumberof hitson it’s pagewhereit is beingpaidperhit by anadvertiser.� A trapdoor-free cost-functionis onewheretheserverhasnoadvantage in minting tokens.

An exampleof a trapdoor-freecost-function is theHashcash[1] cost-function. JuelsandBrainard’s client-puzzle
cost-function is anexample of a known-solutioncost-function wheretheserver hasanadvantagein minting tokens.
Client-puzzlesasspecifiedin thepaper arein addition notpublicly auditable, though this is dueto astorageoptimiza-
tion andnot inherent to theirdesign.

2

3 The Hashcashcost-function

Hashcashis a non-interactive,publicly auditable,trapdoor-freecostfunctionwith unboundedprobabilistic cost.
First we introducesomenotation: considerbitstring � '*) �+
-,/.10 , we define 2 � 354 to means thebit at offseti, where2 � 3 $ is theleft-most bit, and 2 � 376 896 is theright-mostbit. 2 �-3�4;:<:<: = meansthebit-wisesubstringbetweenandincludingbits>

and? , 2 �-3 45:<:<: = ' 2 �-3 4A@�BCB�BD@ 2 �-3 = . So � ' 2 �-3 $:<:<: 6 896 .
Wedefineabinary infix comparisonoperator E FHGJI'LK whereb is thelengthof thecommon left-substring from thetwo

bit-strings. M
E FHGNI'PORQ 2

M
3 $TS' 2 Q 3 $M

E FHGNI' K Q U 4CV $:<:<: K 2
M
3�4 ' 2 Q 3�4

Hashcashis computedrelative to a service-name� , to prevent tokensmintedfor oneserverbeingusedonanother
(servers only accepttokens mintedusing their own service-name). The service-namecanbe any bit-string which
uniquely identifiestheservice(eg. hostname,emailaddress,etc).

Thehashcashfunction is definedas(notethis is animprovedsimplifedvariantsinceinitial publicationseenotein
section5: �WWWWWWW� WWWWWWW�

PUBLIC: hashfunction XP��Y � with output size � bits� 	 MINT ����
��Z� find

M
[]\) �+
-,/.^0 st X_��� @
M
� E FHGNI'_` � �

return ����

M
�� 	 VALUE � � � X_��� @

M
�aE FHGNI'_b � �

return c
Thehashcashcost-function is basedon findingpartial hashcollisionson theall 0 bits � -bit string � � . Thefastest

algorithm for computing partial collisionsis bruteforce. Thereis no challenge asthe client cansafelychoosehis
own random challenge, andso the hashcashcost-function is a trapdoor-freeandnon-interactivecost-function. In
additiontheHashcashcost-function is publicly auditable, becauseanyonecanefficiently verify any publishedtokens.
(In practice d

M
d shouldbechosento belarge enough to make theprobability thatclientsreusea previously usedstart

valuenegligible; d
M
d ' ,%e/f bitsshouldbeenoughevenfor abusyserver.)

Theserver needsto keepa double spendingdatabaseof spenttokens,to detectandrejectattemptsto spendthe
sametokenagain.To preventthedatabasegrowing indefinitely, theservicestringcaninclude thetimeat whichit was
minted. This allows the server to discardentriesfrom thespentdatabaseafter they have expired. Somereasonable
expiry period should bechosento take account of clock inaccuracy, computationtime,andtransmissiondelays.

Hashcashwas originally proposedas a counter-measureagainst email spam,and against systematicabuseof
anonymous remailers.It is necessaryto usenon-interactivecost-functionsfor thesescenarios asthereis no channel
for the server to senda challenge over. However oneadvantageof interactivecost-functions is that it is possible
to prevent pre-computationattacks.For example, if thereis a costassociatedwith sendingeachemail this may be
sufficient to limit the scaleof email abuseperpetratedby spammers; however for a pure DoS-motivatedattacka
determinedadversary mayspenda yearpre-computing tokens to all bevalid on thesameday, andon thatdaybeable
to temporarily overloadthesystem.

It would be possibleto reduce the scopefor suchpre-computation attacksby usinga slowly changing beacon
(unpredictablebroadcastauthenticatedvalue changing over time) suchassaythis weekswinning lotterynumbers. In
this eventthecurrentbeaconvalueis included in thestartstring,limiting pre-computationattacksto beingconducted
within thetime period betweenbeacon valuechanges.

4 Interacti veHashcash

With the interactive form of hashcash,for usein interactive settingssuchasTCP, TLS, SSH,IPSECetcconnection
establishmenta challenge is chosenby theserver. Theaim of interactive hashcashis to defend server resourcesfrom
prematuredepletion, andprovidegraceful degradationof servicewith fair allocationacrossusersin thefaceof aDoS
attackwhereoneuserattemptsto deny serviceto theotherusersby consuming asmany serverresourcesashecan.In

3

thecaseof securityprotocolssuchasTLS,SSHandIPSECwith computationallyexpensiveconnectionestablishment
phasesinvolving publickey cryptotheserver resourcebeingdefendedis theserversavailableCPUtime.

Theinteractivehashcashcost-functionis definedasfollows:�WWWWWWW� WWWWWWW�
�g	 CHAL ����
���� chooseh

[i\) �+
-,j. �
return ����
��"
7h-�� 	 MINT ��k(� find

M
[]\) �+
-,j.%0 st XP��� @ h @
M
�lE FHGNI'_` � �

return ����

M
�� 	 VALUE �;m�� XP��� @ h @

M
�aE FHGJI' b � �

return c
4.1 Dynamic thr ottling

With interactive hashcashit becomespossibleto dynamicallyadjustthework factorrequired for theclient basedon
server CPU load. Theapproachalsoadmitsthe possibility that interactive hashcashchallenge-responsewould only
be usedduring periods of high load. This makes it possibleto phase-inDoS resistentprotocols without breaking
backwards compatibility with old client software. Underperiods of high loadnon-hashcashawareclientswould be
unable to connect,orwouldbeplacedin alimitedconnectionpoolsubjecttoolderlesseffectiveDoScounter-measures
suchasrandomconnectiondropping.

4.2 hashcash-cookies

With connection-slotdepletion attackssuchasthesyn-flood attack,andstraight-forwardTCPconnection-slot deple-
tion theserver resourcethatis beingconsumedis spaceavailableto theTCPstackto storeper-connectionstate.

In this scenarioit maybe desirable to avoid keeping perconnectionstate,until theclient hascomputed a token
with theinteractive hashcashcost-function. This defenseis similar to thesyn-cookie defenseto thesyn-floodattack,
but hereweproposeto additionally imposea CPUcostontheconnectingmachine to reservea TCPconnection-slot.

To avoid storingthe challenge in the connectionstate(which itself consumes space)the server may chooseto
computea keyed MAC of theinformationit wouldotherwisestoreandsentit to theclient aspartof thechallenge so
it canverify the authenticity of the challenge andtokenwhenthe client returns them. (This general technique – of
sendinga record you would otherwisestoretogether with a MAC to theentity the informationis about – is referred
to asa symmetrickey certificate.) This approachis analogousto the technique usedin syn-cookies,andJuelsand
Brainardproposeda relatedapproachbut at theapplication protocol level in their client-puzzlespaper.

For example with MAC function n keyedby serverkey o thechallenge MAC couldbecomputedas:�WWWW� WWWW�
PUBLIC: MAC function np��YC
^Y �
�g	 CHAL �;�Z� chooseh

[\) �q
-,/. �
compute rs	 np�5o#
�t @ � @vul@ � @ h-�
return �;t9
w�/
 u
��"
�hx
�rg�

The client mustsendthe MAC r , andthe challenge h andchallenge parametersu with the responsetoken so
that theserver canverify thechallenge andtheresponse.Theserver shouldalsoinclude in theMAC theconnection
parameters,at minimum enough to identify theconnection-slotandsometime measurementor increasing counter t
sothatold challenge responsescannotbecollectedandre-usedaftertheconnection-slotsarefree.Thechallengeand
MAC would besentin theTCPSYN-ACK responsemessage,andtheclient would includethe interactive hashcash
token (challenge-response)in theTCP ACK message.As with syn-cookies,theserver would not needto keepany
stateperconnectionprior to receiving theTCPACK.

For backwardscompatibility with syn-cookie awareTCPstacks,a hashcash-cookie awareTCPstackwould only
turnonhashcash-cookieswhenit detectedthatit wassubjectto aTCPconnection-depletionattack.Similararguments
asgiven by DanBernsteinin [5] canbeusedto show thatbackwardscompatibility is retained, namelyundersyn-flood
attacksBernstein’s argumentsshow how to provide backwardscompatibility with nonsyn-cookie awareimplementa-
tions;similarly underconnection-depletionattackhashcash-cookiesareonly turnedonatapoint whereservicewould
anywayotherwisebeunavailableto anon-hashcash-cookieawareTCPstack.

4

As thefloodincreasesin severity thehashcash-cookie algorithm wouldincreasethecollisionsizerequiredto bein
theTCPACK message.Thehashcash-cookieawareclientcanstill connect(albeitincreasinlyslowly) with amorefair
chanceagainst theDoSattacker presuming theDoSerhaslimited CPUresources.TheDoSattacker will effectively
bepitting his CPUagainstall theother(hashcash-cookieaware)clientsalsotrying to connect.Without thehashcash-
cookie defensetheDoSercanflood theserver with connectionestablishmentsandcanmoreeasilytie up all it’s slots
by completing n connectionsper idle connection time-out wheren is thesizeof theconnection table,or pinging the
connectionsonceperidle connectiontime-out to convincetheserver they arealive.

Connectionswill behanded out to userscollectively in roughproportion to theirCPUresources,andsofairnessis
CPUresourcebased(presumingeachuseris trying to open asmany connectionsashecan)sotheresultwill bebiased
in favor of clientswith fastprocessorsasthey cancompute moreinteractive-hashcashchallenge-responsetokensper
second.

5 Hashcashimpr ovements

In theinitially publishedhashcashscheme,thetarget stringto find a hashcollision on waschosenfairly by usingthe
hashof theservice-name(andrespectively theservice-nameandchallengein the interactive setting). A subsequent
improvement suggestedindependentlyby Hal Finney [6] andThomasBoschloo[7] for hashcashis to find a collision
against afixedoutput string.Theirobservationis thata fixedcollision targetis alsofair, simplerandreduces verifica-
tion costby a factorof 2. A fixedtargetstringwhichis convenientto compare trial collisionsagainst is thek-bit string� � where � is thehashoutput size.

6 Low Variance

Ideallycost-functiontokensshouldtakeapredictableamount of computing resourcestocompute. JuelsandBrainard’s
client-puzzleconstructionprovidesaprobabilistic bounded-costby issuingchallengeswith known-solutions, however
while thislimits thetheoretical worstcaserunning time,it makeslimitedpracticaldifferenceto thevarianceandtypical
experiencedrunning time. Thetechniqueof usingknown solutionsis alsonotapplicable to thenon-interactivesetting.
It is anopenquestionasto whetherthereexist probabilisticbounded-cost,or fixed-costnon-interactivecost-functions
with thesameorder of magnitudeof verification costashashcash.

Theothermoresignificantincremental improvementdueto JuelsandBrainardis thesuggestionto usemultiple
sub-puzzleswith thesameexpectedcost,but lower variancein cost.This technique shouldbeapplicable to boththe
non-interactiveandinteractive variantsof hashcash.

6.1 Non-Parallelizability and Distrib uted DoS

Roger Dingledine, Michael Freedmanand David Molnar put forward the argument that non-parallelizablecost-
functionsarelessvulnerableto DistributedDoS(DDoS)in chapter16of [8]. Theirargumentis thatnon-parallelizable
cost-functionsfrustrateDDoSbecausetheattacker is thenunable sub-divide andfarmout thework of computing an
individual token.

Theauthordescribed a fixed-costcost-function in [9] usingRivest,ShamirandWagner’s time-lock puzzle[10]
which alsohappens to benon-parallelizable.Thetime-lockpuzzlecost-functioncanbeusedin eitheran interactive
or non-interactive settingas it is safefor the userto chosetheir own challenge. The applicability of Rivestet al’s
time-lockpuzzleasa cost-functionwasalsosubsequently observedby Dingledineet al in [8].

For completenesswe presentthetime-lockpuzzlebasedfixed-costandnon-parallelizable cost-function from [9]
here:

5

�WWWWWWWWWWWWWWWWWW� WWWWWWWWWWWWWWWWWW�

PUBLIC: y ' u{z
PRIVATE: primesu and z
A|l�5y�� ' � u~} ,�� � z�} ,%�
�g	 CHAL ����
���� chooseh

[\
2 �q
�y��

return ����
�hx
����� 	 MINT ����� compute

M
	�XP��� @ h-�

compute Q 	
M{�%�

�;���1��y��
return ����
�hx
��"
 Q �� 	 VALUE � � � compute

M
	�XP��� @ h-�

compute �T	
M ` ���1��|l�;y��

if

M{� '�Q �5������y�� return �
elsereturn �

The client doesnot know |a�5y�� , andso the mostefficient methodfor the client to calculateMINT() is repeated
exponentiation, which requires � exponentiations. Thechallenger knows |l�5y�� whichallows a moreefficientcompu-
tationby reducing theexponent ���1�{|l�5y�� , so thechallengercanexecute VALUE() with 2 modular exponentiations.
Thechallenger asa side-effect hasa trapdoor in computing the cost-functionashecancompute MINT() efficiently
usingthesamealgorithm.

We argue however that the added DDoS protectionprovided by non-parallelizablecost-functions is marginal:
unlesstheserverrestrictsthenumberof challenges it handsout to a recognizablyuniqueclient theDDoSattackercan
farmoutmultiple challengesaseasilyasfarmoutasub-dividedsinglechallenge,andconsumeresourcesontheserver
at thesamerateasbefore. Furtherit is not thathardfor a singleclient to masquerade asmultiple clientsto a server.

Consideralso:theDDoSattackerhasgenerally dueto thenatureof hismethodof commandeeringnodesanequal
number of network connectednodes at his disposalasprocessors.He can therefore in any casehave eachattack
nodedirectly participatein thenormal protocol indistinguisablyfrom any legitimate user. This attackstrategy is also
otherwiseoptimal anyway astheattacknodeswill present a variedsetof sourceaddresseswhich will foil attempts
at per-connectionfairnessthrottling strategiesandrouterbasedDDoS counter-measuresbasedon volume of traffic
acrossIP addressranges.Thereforefor thenatural attacknodemarshalling patterns non-parallelizablecost-functions
offer limited addedresistance.

As well as the argumentsagainst the practicalefficacy and value of non-parallelizable cost-functions, to date
non-parallelizable costfunctionshave hadordersof magnitudeslower verificationfunctions thannon-parallelizable
cost-functions.Thisis becausethenon-parallelizablecost-functionssofardiscussedin theliteraturearerelatedto trap-
doorpublic key cryptography constructswhichareinherently lessefficient. It is anopenquestionasto whetherthere
exist non-parallelizablecost-functionsbasedon symmetric-key (or public-key) constructs with verification functions
of thesameorderof magnitudeasthoseof symmetric-cryptobasedcost-functions.

While for theapplication of time-lockpuzzlesto cost-functions,a reducedpublickey sizecould beusedto speed
up the verificationfunction, this approachintroducesrisk that the modulus will be factoredwith the result that the
attackergains a big advantagein minting tokens.(Note: factoring is itself a largely parallelizable computation.)

To combatthis theserver shouldchange thepublic parameters periodically. However in theparticular caseof the
public parametersusedby time-lockpuzzles (which arethesameastheRSA modulus usedin RSA encryption), this
operation is itself moderatelyexpensive, sothis operation would not beperformedtoo frequently. It would probably
notbewiseto deploy softwarebasedonkey sizesbelow 768bits for thisaplication, in addition it wouldhelpto change
keys periodically, sayevery hour or so. (RSA modulii of 512bits have recentlybeenfactoredby a closedgroup as
discussedin [11] andmorerecentlyhave beendemonstratedby Nicko van Somerenet al to be factorizableusing
standardequipmentin anofficeasreportedin [12]; DDoSattackersareknown beableto mustersignificantresources,
probablyeasilyexceeding thoseusedin thisdemonstration.)

The time-lockpuzzle cost-functionalsois necessarilytrap-door astheserver needsa private verification-key to
allow it to efficiently verify tokens. The existance of a verification-key presentsthe addedrisk of key compromise
allowing theattacker to by-passthecost-functionprotection. (Theinteractive hashcashcost-functionby comparison
is trap-door-free,so thereis no key which would allow an attacker a short-cut in computing tokens). In fact if the
verification-key werecompromised,it couldbereplaced,but this needaddscomplexity andadministrative overhead
asthis event needsto bedetectedandmanualintervention or someautomateddetectiontriggeringkey-replacement
implemented.

6

The time-lock puzzlecost-function also will tend to have larger messagesas thereis a needto communicate
plannedandemergency re-keyedpublic parameters.For someapplications, for example thesyn-cookie andhashcash-
cookie protocols, spaceis at a premium dueto backwards compatibility andpacket sizeconstraints imposedby the
network infrastructure.

So in summary we argue that non-parallelizablecost-functionsareof questionable practical valuein protecting
against DDoSattacks,have moreexpensive verificationfunctions, incur therisk of verification key compromiseand
attendant key managementcomplexities,have larger messages,andaresignificantlymorecomplex to implement. We
therefore recommendinsteadthesimplerhashcashprotocol (or if thepublic-auditabilityandnon-interactive options
arenot requiredJuelsandBrainard’s client-puzzlesareroughly equivalent).

7 Applications

Apart from theinitially proposedapplications for hashcashof throttling DoSagainstremailernetworks anddetering
emailspam,sincepublicationthefollowingapplicationshavebeendiscussed,exploredandin somecasesimplemented
anddeployed:� hashcash-cookies,apotentialextensionof thesyn-cookie asdiscussedin section4.2for allowing moregraceful

servicedegradationin thefaceof connection-depletionattacks.� interactive-hashcashasdiscussedin section4 for DoS throttling andgraceful servicedegradationunderCPU
overloadattackson securityprotocolswith computationally expensive connection establishment phases.No
deploymentbut theanalogousclient-puzzlesystemwasimplementedwith TLS in [13]� hashcashthrottling of DoSpublication floodsin anonymouspublication systemssuchasFreenet[14], Publius
[15], Tangler[16],� hashcashthrottlingof servicerequestsin thecryptographic Self-certifying File System[17]� hashcashthrottlingof USENETflooding via mail2news networks [18]� hashcashasa minting mechanismfor Wei Dai’s b-money electroniccashproposal,anelectroniccashscheme
without a banking interface[19]

8 Cost-function classificationscheme

Welist hereaclassificationof characteristicsof cost-functions.Weusethefollowing notationto denote theproperties
of a cost-function: ��2 � '�) ,/
 $&
��1.^3�
%2 � '�) �q
 $&
-,/.-3H
^2) >
v��H.^3�
%2)��
 �� .-3H
^2) t9
 �t7.^3�
%2) u
��u .^3��

Where� is theefficiency: value � ' , meansefficiently-verifiable–verifiablewith costcomparabletoor lowerthan
thecostof verifying symmetric key constructssuchashashcashwhichconsumejustasinglecompressionroundof an
iterative compressionfunctionbasedhashfunction suchasSHA1 or MD5. Value � ' $& meanspractically-verifiable
we meanlessefficiently thanefficienty-verifiable, but still efficient enough to bepracticalfor someapplications, for
example theauthorconsiders the time-lock puzzlebasedcost-functionwith it’s two modular exponentiationsto fall
into thiscategory. Value � ' � meansverifiablebut impractical, thatthecost-functionis verifiablebut theverification
function is impracticallyslow suchthat the existanceof the cost-function servesonly asa proof of concept to be
improveduponfor practicaluse.

And � is a characterization of the standard-deviation, value � ' � means fixed-cost, � ' $& meansbounded
probabilistic cost and � ' , meansunboundedprobabilistic cost. Note by boundedprobabilistic-cost we mean
usefully bounded– a bound in the work factor in excessof a work-factor that an otherwise functionally similar
unbounded cost-functionwouldonly reachwith negligible probability wouldnotbeuseful.

And
>

denotesthatthecost-function is interactive, and � � thatthecost-function is non-interactive.
And � denotesthatthecost-functionis publiclyauditable, �� denotesthatthecost-functionis notpubliclyauditable,

whichmeansin practicethatit is onlyverifiableby theserviceusingaprivatekey material.Notebypublic-auditability

7

we meanefficiently publicly-auditable, andwould not considerrepeating the work of the token minter asadequate
efficiency to classify.

And t denotesthat theserver hasa trapdoor in computing thecost-function, conversely �t denotesthatserver has
no trapdoor in computing thecost-function.

And u denotesthatthecost-functionis parallelizable, �u deontesthatthecost-functionis non-parallelizable.

trapdoor-free trapdoor
interactive hashcash client-puzzles�5� ' ,/
7� ' ,/
 >
 �
 �tw
 u � �5� ' ,�
�� ' $&
 >
 �
�t9
 u �

time-lock�5� ' $&
�� ' �q
 >
-��
�t9
/�u �
non-interactive hashcash�5� ' ,�
�� ' ,�
v��v
 �
 �t9
 u �

time-lock��� ' $&
7� ' �q
���v
-��
�t9
��u �
8.1 Open Problems� existance of efficiently-verifiable non-interactivefixed-cost cost-functions �5� ' ,�
�� ' �+
v��H� (andthe related

weakerproblem: existanceof samewith probabilistic bounded-cost �5� ' ,/
7� ' $&
�����)� existance of efficiently-verifiable non-interactivenon-parallelizablecost-functions �5� ' ,/
v���
��u � (andtherelated
weakerproblem: existanceof samein interactive setting �5� ' ,/
 >
��u �)� existance of publicly-auditable non-interactivefixed-costcost-functions �5� ' �+
v��v
 � � (andthe relatedweaker
problem:existanceof samewith boundedprobabilistic-cost ��� ' $&
v��v
 � �)

8

References

[1] AdamBack. Hashcash,May 1997. Publishedat http://w ww.cyphersp ace.org/has hcash/ .

[2] CynthiaDwork andMoni Naor. Pricing via processingor combatting junk mail. In Proceedings of Crypto,
1992. Also availableashttp://ww w.wisdom.w eizmann.ac. il:81/Diens t/UI/2.0/D escribe/
ncstrl.w eizmann_il /CS95- 20 .

[3] Ari Juelsand JohnBrainard. Client puzzles: A cryptographiccountermeasureagainst connection depletion
attacks. In Networkand Distributed SystemSecuritySymposium, 1999. Also available as http://ww w.
rsasecur ity.com/rs alabs/staff /bios/ajuel s/publicat ions/client - puzzles/ .

[4] Markus JakobssonandAri Juels.Proofsof work andbreadpudding protocols. In Proceedings of theIFIP TC6
andTC11Joint WorkingConferenceonCommunicationsandMultimediaSecurity(CMS’99), Leuven,Belgium,
September 1999. Also availableashttp:/ /citeseer.n j.nec.com/2 38810.html .

[5] DanBernstein.Syncookies. Publishedat http://c r.yp.to/syn cookies.htm l .

[6] Hal Finney. Personalcommunication, Mar 2002.

[7] ThomasBoschloo.Personalcommunication,Mar 2002.

[8] Andy Oram, editor. Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly
and Associates, 2001. Chapter 16 also available as http://fr eehaven.net /doc/oreill y/
accounta bility- ch16 .html .

[9] AdamBack. Hashcash- amortizable publicly auditable costfunctions. Earlydraftof paper, 2000.

[10] RonaldL Rivest, Adi Shamir, and David A Wagner. Time-lock puzzlesand timed-releasecrypto. Tech-
nical Report MIT/LCS/TR-684, 1996. Also available as http://the ory.lcs.mit .edu/˜rives t/
publicat ions.html .

[11] Hermante Riele. Securityof e-commercethreatened by 512-bit number factorization. Publishedat http:
//www.cw i.nl/˜kik/ persb- UK.htm l , Aug 1999.

[12] DennisFisher. Experts debaterisks to crypto, Mar 2002. Also availableas http://w ww.eweek.co m/
article/ 0, 3658, s=720 &a=24663, 00.asp .

[13] Drew DeanandAdam Stubblefield. Using cleint puzzlesto protecttls. In Proceedings of the 10th USENIX
SecuritySymposium, Aug 2001. Also availableashttp://www. cs.rice.edu /˜astubble /papers.
html .

[14] IanClarke,OskarSandberg,Brandon Wiley, andTheodoreHong. Freenet:A distributedanonymousinformation
storageandretrieval system.In HannesFederrath, editor, Proceedingsof theInternational WorkshoponDesign
Issuesin Anonymityand Unobservability. Springer, 2001. Also availableashttp://fr eenetprojec t.
org/cgi- bin/twiki/v iew/Main/Pa pers .

[15] Marc Waldman,Aviel D Rubin, and Lorrie Faith Cranor. Publius: A robust, tamper-evident, censorship-
resistantweb publishing system. In Proceedings of the 9th USENIX Security Symposium, Aug 2000.
Also availableashttp:// www.usenix. org/publica tions/libr ary/proceed ings/sec200 0/
waldman/ waldman_ht ml/v2.html .

[16] Marc WaldmanandDavid Mazieres. Tangler: A censorship resistantpublishing systembasedon document
entanglement. In Proceedings of the 8th ACM Conferenceon Computerand Communication Security, Nov
2001. Also availableashttp:// www.cs.nyu. edu/˜waldma n/ .

[17] David Mazieres.Self-certifyingFile System. PhDthesis,MassachusettsInstituteof Technology, May 2000. Also
availableashttp://scs. cs.nyu.edu/ ˜dm/ .

9

[18] Alex deJoode.Hashcashsupport at dizummail2news gateway. Publishedat https://s sl.dizum.co m/
hashcash / , 2002.

[19] Wei Dai. b-money. Publishedat http://w ww.eskimo.c om/˜weidai /bmoney.txt , Nov 1998.

10

