
PROTOCOLS FOR PUBUC KEY CRYPTOSYSTEMS

Ralph C. Merkle

ELXSi International

Sunnyvale, Ca.

Abstract

New cryptographic protocols which

take full advantage of the unique pro­

perties of public key cryptosystems are

now evolving. Several protocols for

public key distribution and for dig~tal

signatures are briefly compared with

each other and with the conventional al-

ternative.

1. Introduction

The special strengths of public key
.

systems are briefly considered by exa-

mining cryptographic protocols for key

distribution and digital signatures us-

This work was partially supported under

NSF Grant ENG 10173, and much of the

work was done at Stanford University

ISL. The author would also like to ack­

nowledge the support of BNR Inc, where

much of the work reported here was done.

An extended version has been submitted

to CACM.

122

ing both public key and conventional

systems.

The reader is assumed to be fami-

liar with the general ideas behind pub­

lic key cryptosystems, as described in

[1,10].

For many of the following examples

we assume there are two communicants,

called A and B, and an opponent E. A

and B will attempt to send secret mes­

sages and sign contracts, while E will

attempt to discover the keys, learn the

secrets, and forge contracts. Some-

times, A will attempt to evade a con-

tract he signed with B, or B will at­

tempt to forge A~s signature to a new

contract.

A and B will need to apply one way

functions to various arguments of vari-

ous sizes, so we assume we have a one

way function F which can be applied to

arguments of any size and produce a

fixed size output. For a more complete

discussion of one way functions, see

[2,9,13,19].

t,

i

•

p

t
1

t ,
! ,

I
I

2. Centralized Key Distribution

Centralized key distribution using

conventional encryption functions was

the only reasonable method of handling

key distribution in a mUlti-user network

environment before the discovery of pub­

lic key distribution methods. Only con­

ventional encryption functions need be

used, which presently offers a perfor­

mance advantage. (Presently known pub­

lic key systems are less efficient than

conventional cryptographic systems.

Whether or not this will continue is not
I

now known. Discovery of new public key

systems seems almost inevitable, and

discovery of more efficient ones prob­

able.)

In centralized key distribution, A,

B, and all other system users somehow

deposit a conventional cryptographic key

with a central key distribution center.

If A wishes to communicate with B, the

key distribution center will send a com­

mon (session) key to A and B using the

previously agreed on central keys. A

and B can then communicate with no

further assistance from the key distri­

bution center.

This protocol is simple and re-

quires only conventional encryption

functions. Its use has been defended in

the literature [17,18,20].

123

The major drawback of this protocol

is its vulnerability to both centralized

loss of security and centralized loss of

function. Theft of the central keys, or

bribery of personnel at the central site

will compromise all users of the system.

Similarly, .destruction of the central

keys destroys the key distribution

mechanism for all users.

The security and reliability of

centralized key distribution can be in-

creased by using two or more centers,

each with its own keys [1]. Destruction

or compromise of a single center will

not affect the other centers.

security can also be improved if

all the user keys are encrypted with a

master key by the center. The master

key must still be stored securely (and

suitable provision made for its backup),

but the (encrypted) user keys can be

stored anywhere. This approach is used

by IBM (23).

This protocol does not fully solve

the key distribution problem: some sort

of key distribution method must be used

between each user and the center to es-

tablish the original keys. This problem

is nontrivial because no electronic com-

munications can be used and inexpensive

physical methods, e.g., registered mail,

offer only moderate security. The use

of couriers is reasonably secure,

although more expensive.

3. Simple Public Key Distribution

This is the most basic application

of public key systems [1,5,6,7,8]. Its

purpose is to allow A and B to agree on

a common key k without any prior secret

arrangements, even though E overhears

all messages. A randomly computes enci­

phering and deciphering keys EA and DA,

and sends EA to B (and E). B picks the

random key, k, and transmits EA(k) to A

(and E). A computes DA(EA(k» = k. A

then discards both EA and DA, and B dis­

cards EA. The key in future communica­

tions is k. It is used to encrypt all

further messages using a conventional

encryption function. Once A and B have

finished talking, they both discard k.

If they later resume the conversation

the process is repeated to agree o~ a

new key k~.

This protocol is very simple, and

has a great deal to recommend it.

First, no keys and no secret materials

exist before A and B start communicat-

ing, and nothing is retained after they

have finished. It is impossible for E

to compromise any keys either before the

conversation takes place, or after it is

over, for the keys exist only during the

conversation.

124

The disadvantage of this protocol

is that E might actively interfere with

the exchange of keys. Worse yet, E can

force a known k on both A and B.

4. Authenticated Public Key Distribution

The now classic protocol [1] for

secure and authenticated communications

between A and B is: A and B generate EA

and EB and make them public, while keep­

ing DA and DB secret. The public enci­

phering keys of all users are entered in

a public file, allowing easy and authen-

ticated access to EX for any user, x.
If A and B wish to agree on a com-

mon key k, then each sends a (session)

key to the other by enqrypting it with

the others public key. The two keys

thus agreed on are combined and used to

encrypt further messages.

At the end of this protocol, A and

B have agreed on a common key, k, which

is both secret and authenticated.

This protocol suffers from two

weaknesses. First, entries in the pub-

lic file might be altered. This can be

dealt with both by good physical securi-

ty, or by using new protocols (see sec-

tions 5 and 6) for authenticating the

entries in the public file.

p

I
\
t

.....

..

Second, secret deciphering keys can

be lost. This problem must ultimately

be solved by good physical security.

5. Public Key Distribution with Certifi-

Kohnfelder [3] first suggested that

entries in the public file be authenti-

cated by having a Central Authority (CA)

sign them with DCA. He called such

signed entries certificates.

The protocol with certificates is

the same as the authenticated protocol,

except that A and B can now check the

entries in the public file by checking

each other~s certificates. This proto­

col assures A and B that each has the

other~s public enciphering key, and not

the public enciphering key of some im-

poster.

The security of this protocol rests

on the assumptions that the secret deci­

phering keys of A, B, and CA have not

been compromised~ that A and B have

correct copies of ECA (to check the

signed certificates); and that CA has

not issued a bad certificate, either

deliberately because it was un-

trustworthy, or accidentally because it

was tricked.

125

ECA can be published in newspapers

and magazines, and sent over all avail-

able communication channels: blocking

its correct reception would be yery dif­

ficult.

If DCA is compromised, then it is

no longer. possible to authenticate the

users of the system and their public en-

ciphering keys. The certificates are

now worthless because the (unauthorized)

person who has learned DCA can produce

false certificates at will.

6. Public Key Distribution with ~ Au­

thentication

Key distribution with certificates

was vulnerable to the criticism that DCA

can be compromised, resulting in system

wide loss of authentication. This prob­

lem can be solved by using tree authen-

tication [13].

Again, this protocol attempts to

authenticate entries in the public file.

However, instead of signing each entry

in the public file, this protocol ap­

plies a one way hash function, H, to the

entire public file. Even though H is

applied to the entire public file, the

output of H is only 100 or 200 bits

long. The (small) output of H will be

called the root, R, of the public file.

If all users .of the syst~m know R, then

all users can authenticate the correct-

ness of the (whole) public file by com­

puting R = H(public file). Any attempt

to introduce changes into the public

file will imply R ; H(altered public

file), an easily detected fact.

This method effectively eliminates

the possibility of compromising DCA be­

cause no secret deciphering key exists.

Because the public file wi.ll be sub­

jected to the harsh glare of public

scrutiny, and because making alterations

in the public file is effectively impos­

sible after it has been published, a
.. '

high degree of assurance that it is

correct can be attained.

This method is impractical as stat­

ed. Fortunately, it is possible to

selectively authenticate individual en­

tries in the public file without having

to know the whole publi~ file by using

Merkle#s -tree authentication,- [13].

The essence of tree authentication

is to authenticate the entire public

file by Rdivide and conquer.- If we de­

fine Y = public file = Yl , Y2, Yn'

(so the ith entry in the public file is

denoted Yi' and B#s entry is YB); we can

define H(public file) = H(!) as:

H(!) = F(H(first half of !),

H(second half of !))

126

Where F is a one way function.

If A wishes to confirm B#s public

enciphering key, then A need only know

the first half of the public file,

(which is where YB appears) and H(second

half of public file) which is only 100

bits long. A can compute H(public file)

knowing only this information, and yet A

only knew half the entries in the public

file.

In a similar fashion, A does not

really need to know all of the first

half of the public file, for

H(first half of public file) =
F(H(first quarter of public file),

H(second quarter of public file)

All A needs to know is the first quarter

of the public file (which has YB), and

H(second quarter of public file).

By applying this concept recursive­

ly, A can confirm YB in the public file

knowing only R, 1092 n intermediate

values, and YB itself. The information

needed to authenticate YB, given :hat R

has already been authenticated, lies

along the path from R to YB and will be

called the authentication path.

These definitions are illustrated

in figure 1, which shows the authentica-

tion path for Ys .

..

For a more detailed discussion the

reader is referred to [13].

Using tree authentication, user A

has an authentication path which can be

used to authenticate user A's public en­

ciphering key, provided only that R has

already been authenticated. An "authen­

tication path" is a new form of certifi-

cate, with ECA replaced by R.

This protocol can only be comprom-

ised if: DA or Os is compromised, or if

R is not correctly known by A or S, or

if there is a false and misleading entry

in the public file.

The latter two are easily detect­

able. If either A or S has the wrong R,

they will be unable to complete the pro­

tocol with any other legitimate user who

has the correct R, a fact that will be

quickly detected.

Secause the public file is both

open to public scrutiny and unalterable,

false or misleading entries can be ra-

pidly detected. In practice, a few

users concerned with correctness can

verify that the public file satisfies

some simple global properties, i.e.,

each user name appears once and once

only in the entire public file; indivi­

dual users can then verify that their

own entry is correct, and need not both­

er examining the rest of the public

file.

127

The only practical method of

compromising this protocol is to

compromise DA or OS. A user's security

is thus dependent on himself and no one

else.

7. Digital Signatures

The use of public key cryptosystems

to provide digital signatures was sug-

gested by Diffie and Hellman [1] •

Rivest, Shamir and Adleman [8) have sug-

gested an attractive implementation.

Signature tech' b nlques ased on methods

other than public key t cryp osystems have

been suggested by Lamport and Diffie

[l,24}, Rabin [15}, and Merkle (13).

Digital signatures, whether based

on conventional encryption functions, on

public key cryptosystems, on probabilis­

tic computations, or on other techniques

share several important properties in

common. These common properties are

best illustrated by the f ollowing now

classic example.

A wishes to place a purchase order

with his stock broker S. A, on the

Riviera, cannot send a written order to

S in New York in time. All that A can

quickly send to S is information, . l.e.,

a sequence of bits, but S is concerned

that A may later disclaim the order. A

m

must somehow generate a sequence of bits

(a digital signature) whlch will con­

vince B (and if need be a judge) that A

authorized the order. It must be easy

for B to validate the digital signature,

but impossible for him (or anyone other

than A) to generate it (to prevent

charges that B was dabbling in the mark­

et illegally with A~s money).

There are digital signature schemes

which do not involve public key cryp­

tosystems but it will be convenient no­

tationally to let A sign message m by

computing the signature, DA(m). Check-

ing a signature will then be done by

produces an illegible message (random

bits) then the signature is rejected as

invalid. This notation is somewhat

misleading because the actual method of

generating and validating signatures can

be very different from this model; it is

retained because it is widely known"and

because we will not discuss the differ-

ences among different digital signature

methods, only their common properties.

Digital signature protocols are na­

turally divided into three parts: a

method of signing messages used by A, a

method for authenticating °a signature

used by B, and a method for resolving

disputes, used by the judge. It is im­

portant to note that two protocols that

differ only in the method of resolving

128

disputes ~ different. Failure to

understand this point has led to confu­

sion in the literature [17,20].

We now turn to specific digital

signature protocols.

8. ~ Conventional Signature Protocol

A conventional ftsignature W protocol

relies on the observation that if A and

B trust some central authority CA, and

if A and B have a secure method of com-

municating with CA, then A can "sign n a

message simply by sending it to CA and

relying on CA to adjudicate disputes.

This approach is defended by some [17].

This protocol is subject to the

weaknesses of centralized key distribu­

tion (described earlier).

9. The Basic Digital Signature Protocol

The first public key based digital

signature protocol [1], proceeded by

having A sign message m by computing

DA(m) and giving it to B as the signed

1 °

pi

i
t
I

I
1

message. B (or a judge) can compute

m, thus confirming the

correctness of the signed message. A is

held responsible for a signed message if

and only if it can be verified by apply­

ing A's public enciphering key to it.

This protocol can be criticized

[16,17,20] on two grounds: First, the

public file might have been tampered

with. Methods of authenticating the

public file, discussed previously under

key distribution protocols, solve this

problem.

A second criticism is that A has no

recourse should his secret deciphering

key be compromised and made public.

Anyone can sign any message they desire

with A's compromised DA, and A will be

held responsible.

It seems clear that A will only

agree to this digital signature protocol

if he can provide very good physical

security for DA• The loss to A if DA is

compromised can be substantial.

A different method of solving this

problem is to alter the dispute resolu­

tion protocol so that A is not held

responsible for his signature if his

secret deciphering key is compromised

and made public.

The fact that altering the di&pute

resolution procedure creates a different

protocol has not been fully appreciated,

and the preceding two protocols have

129

been confused with each other for this

reason. Some criticism of "the" public

key digital signature protocol has actu­

ally been of this second protocol, and

failed to consider the first protocol at

all.

If we.assume that A knows DA, then

under the second protocol A can make DA

public and effectively disavow the

signed message. For this reason, some

critics have argued that this protocol

is inadequate.

If we assume that A does not know

DA, then he is unable to disavow his

signature under this protocol. It is

easy to design a system in which this is

the case.

The major difference between the

second protocol and the first is in the

division of risk: in the second proto-

col B will be left holding the bag if

A's signing key is compromised. Clear-

ly, B must be given assurances that this

condition is unlikely before he will be

willing to use this protocol.

10. The Time-Stamp Protocol

A protocol that would allow A to

report loss or theft of DA and disclaim

messages signed after the reported loss

yet force A to acknowledge the validity

of signatures made before the reported

loss must involve the concept of time.

We introduce time into the following

protocol by using time-keepers who can

digitally time-stamp information given

to them. We assume that both A and B

have agreed on a set of acceptable

time-keepers whose time-stamps will be

accepted in dispute resolution.

If A can report that DA has been

lost, then he must report this fact to

some agent who will be responsible for

answering queries about the current

status of DA, i.e., has it been lost or

not. For simplicity, we shall assume

this role is played by the t central au-

thority, CA. CA will sign messages

stating that A's secret deciphering key

has not been compromised as of the

current time. These signed messages

will be called "validity-checks."

In the time stamp protocol, user A

signs message m by computing DA(m) and

sending it to B. B then has a time­

keeper time stamp the message and ob-

tains a validity-check from CA.

has already been reported lost B rejects

the signature, otherwise he accepts.

In dispute resolution, the judge

holds that a message has been validly

signed if and only if it can be checked

by applying A's public enciphering key

AND it has been time-stamped prior to

any reported loss of DA•

This protocol provides very good

assurance to all parties that they have

130

been dealt with fairly.

The major disadvantage of this pro­

tocol, as compared with the basic digi­

tal signature protocol, is the require­

ment that B obtain both a time-stamp and

a validity-check, presumably in real

time. These requirements force the use

of a communications network, which both

increases expense and decreases relia-

bility.

If B is willing to obtain the

time-stamp and the validity-check after

the transaction has been completed,

i.e., within a few days, an off-line

system can be used. This modified pro­

tocol could be used by B either as a

fail-soft protocol during communications

outages, or as the standard protocol if

communication costs are too high.

Off-line operation is cheaper ahd

more reliable, but it exposes B to some

risk: A might have recently reported

the loss of DA and B would not know

about it. If physical security for

secret deciphering keys is good, this

risk should be minimal.

11. Witnessed Digital Signatures

If the value of a transaction is

high enough, it might be desirable to

have a witness physically confirm that A

signed message m. The witness, W, would

compute DW("I, W, physically saw A agree

to and sign message m.n). It would be

necessary for A and B to agree in ad-

vance on acceptable witnesses.

The primary advantage of this pro­

tocol is that it reduces B~s risk. The

primary disadvantage is that it forces A

to find a (physically present) witness

to confirm the transaction.

12. Digital Signature Applications ~

Involving Dispute

Not all applications of digital

signatures involve contracts between two

potentially disputing parties. Digital

signatures are also an ideal method of

broadcasting authenticated messages from

a central source which must be confirmed

by many separate recipients, or repeat­

edly confirmed by the same recipient at

different times to insure that the mes-

sage has not been modified.

One example of such an application

is the distribution of network software

to individual nodes of a .communications

network. It would be clearly undesir-

able for any node to start executing the

wrong software. On the other hand, it

is very desirable to send updates to the

nodes over the network itself. The ob-

131

vious solution is for updates to be di-

gitally signed by an appropriate network

administrator, and for the nodes to

check the digital signature prior to ex-

ecuting them.

This example leads naturally to

another ap~lication of digital signa-

tures in operating system security. A

major risk to the security of an operat­

ing system is the possibility that the

system code that it is executing today

is not the same that it was executing

yesterday: someone might have put a trap

door into the operating system that lets

them do anything they please. To guard

against this possibility, the operating

system could refuse to execute any code

in privileged mode unless that code had

been properly signed. Carried to its

logical conclusion, the operating system

would check the digital signature of

privileged programs each time they were

loaded into central memory If this check

were implemented in hardware, it would

be impossible for any software changes

to subvert it. The machine would be

physically incapable of executing code

in privileged mode unless that code was

signed.

If privileged programs are digital­

ly signed by the programmer who origi­

nally wrote them, as well as by various

supervisory levels, and if the computer.

is physically unable to execute unsigned

code in privileged mode, then it is pos­

sible to have complete assurance that

the privileged programs running on the

computer Tight now have not been modi­

fied since they were given there final

checkout and signed by the programmer.

Of course, this does not necessarily

mean that the operating system is

secure, but it does eliminate a major

class of worries.

13. Conclusions

This paper has briefly described a

number of cryptographic protocols. Cer-

tainly, these are not the only ones pos­

sible; however, they are valuable tools

to the system designer: they illustrate

what can be achieved and provide feasi­

ble solutions to problems of recur$ing

interest.

Further constructive work in this

area is very much needed.

14. ACKNOWLEDGEMENTS

It is a great pleasure for the au­

thor to acknowledge the pleasant and in-

formative conversations he had with Dov

Andelman, Whitfield Diffie, Martin Hell-

man, Raynold Kahn Loren Kohnfelder,

Frank Olken, and Justin Reyneri.

132

15. BIBLIOGRAPHY

1. Diffie, W., and Hellman, M. New

directions in cryptography. IEEE Trans.

on Inform. IT-22, 6(Nov. 1976), 644-654.

2. Evans A., Kantrowitz, W., and Weiss,

E. A user authentication system not re-

quiring secrecy in the computer. Comm.

ACM 17, 8(Aug. 1974),437-442.

3. Kohnfelder, L.M. Towards a practical

public-key cryptosystem. MIT EE

Bachelor~s thesis.

4. Lipton, S.M., and Matyas, S.M. Mak­

ing the digital signature legal--and

safeguarded. Data Communications (Feb.

1978), 41-52.

5. McEliece, R.J. A public-key cryp-

tosystem based on algebraic coding

theory. DSN Progress Report, JPL, (Jan.

and Feb. 1978), 42-44.

6. Merkle, R. Secure Communications

over Insecure Channels. Comm. ACM 21,

4(Apr. 1978), 294-299.

7. Merkle, R., and Hellman, M. Hiding

information and signatures in trapdoor

knapsacks. IEEE Trans. on Inform. IT-

24, 5(Sept. 1978), 525-530.

I
:1

I

•

8 . Rives t, R.L ., Shamir, A., a nd Ad l e ­

man, L. A method f or obtaining digital

sig natur es and public - key cryptosystems.

Comm . ACM 21 , 2 (Feb . 1978) , 120-1 26 .

9. Wilkes, M. V. , Time- Sharing Computer

Systems . El sev i e r, New York, 1972.

1 0 . Diffie , W., and Hellman , M.E. ,

Privacy and authenticat i o n: an introduc­

tion to cryptography, Proc e edings of the

IEEE Vol. 67, No.3, Ma r . 1979 pp . 397-

427.

11. Squires, J. Russ monitor of U. S,

phones, Ch icago Tribune pp. 123, J une

25, 1975.

12. Davi s , R. Remedies sought to defeat

Soviet eavesdropping on microwave links,

Microwave Syst ., vol. 8 , no. 6 , pp . 17-

20, Ju ne 1978.

13. Merkle , R.C. A certified digi tal

signatur e, to appear, CACM.

14. Kahn, D. The Code br eake rs, New

York: Macmillan. 1967 .

15. Rab in, M.O. , Digitalized 5igna-

tures, in Foundation s o f Secure Computa­

tion , ed . DemilIo , R. A., et. a]. pp.

155-166.

133

16 . Salt ze r, J. On Digital Signatures,

private communication .

17. Popek G.J. and Kline , C. S. Encryp­

tion Protocols , Public Key Algori thms,

and Digital Sig natur es in Computer Net-

works ; in Foundations of Secur e Computa-

tion pp . 133-153 .

18. Needham R. M. a nd Schroeder, M.D .

US ing Encryption for Authentication in

Large Networks o f Computers . CACM 21,12

Dec . 1978 pp . 993 - 999 .

19 . Me r kl e , R. Secrecy, authentication ,

a nd public key sys tems . S tanford El ec .

Eng . Ph . D. Thesis , ISL SEL 79 - 017 , 1979.

20 . Popek , G. J ., and Kline , C.S. En-

crypt ion and Secure Computer networks.

Computing Surveys 11 ,4 Dec. 1979 pp.

331- 356 .

21. Simmons, G.J . Symmetric and Asym-

me tric Encryption . Computing Surveys

11,4 Dec. 1979 pp . 305-3 30.

22. Lamport , L. Time, clocks, and the

o rdering of events in a distributed sys -

t ern. CACM 21,7 Jul 1978 pp . 558 - 565.

23. Ehrsam, W.F., Matyas, S.M., Meyer,

C.H., and Tuchma~ W.L. A cryptographic

key management scheme for implementing

the data encryption standard. IBM sys.

Jour. 17,2 1978 pp. 106-125.

24. Lamport, L., Constructing digital

signatures from a one way function. SRI

Int1. CSL - 98

no. 1

134

