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Abstract 

New cryptographic protocols which 

take full advantage of the unique pro­

perties of public key cryptosystems are 

now evolving. Several protocols for 

public key distribution and for dig~tal 

signatures are briefly compared with 

each other and with the conventional al-

ternative. 

1. Introduction 

The special strengths of public key 
. 

systems are briefly considered by exa-

mining cryptographic protocols for key 

distribution and digital signatures us-
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ing both public key and conventional 

systems. 

The reader is assumed to be fami-

liar with the general ideas behind pub­

lic key cryptosystems, as described in 

[1,10]. 

For many of the following examples 

we assume there are two communicants, 

called A and B, and an opponent E. A 

and B will attempt to send secret mes­

sages and sign contracts, while E will 

attempt to discover the keys, learn the 

secrets, and forge contracts. Some-

times, A will attempt to evade a con-

tract he signed with B, or B will at­

tempt to forge A~s signature to a new 

contract. 

A and B will need to apply one way 

functions to various arguments of vari-

ous sizes, so we assume we have a one 

way function F which can be applied to 

arguments of any size and produce a 

fixed size output. For a more complete 

discussion of one way functions, see 

[2,9,13,19]. 
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2. Centralized Key Distribution 

Centralized key distribution using 

conventional encryption functions was 

the only reasonable method of handling 

key distribution in a mUlti-user network 

environment before the discovery of pub­

lic key distribution methods. Only con­

ventional encryption functions need be 

used, which presently offers a perfor­

mance advantage. (Presently known pub­

lic key systems are less efficient than 

conventional cryptographic systems. 

Whether or not this will continue is not 
I 

now known. Discovery of new public key 

systems seems almost inevitable, and 

discovery of more efficient ones prob­

able.) 

In centralized key distribution, A, 

B, and all other system users somehow 

deposit a conventional cryptographic key 

with a central key distribution center. 

If A wishes to communicate with B, the 

key distribution center will send a com­

mon (session) key to A and B using the 

previously agreed on central keys. A 

and B can then communicate with no 

further assistance from the key distri­

bution center. 

This protocol is simple and re-

quires only conventional encryption 

functions. Its use has been defended in 

the literature [17,18,20]. 

123 

The major drawback of this protocol 

is its vulnerability to both centralized 

loss of security and centralized loss of 

function. Theft of the central keys, or 

bribery of personnel at the central site 

will compromise all users of the system. 

Similarly, .destruction of the central 

keys destroys the key distribution 

mechanism for all users. 

The security and reliability of 

centralized key distribution can be in-

creased by using two or more centers, 

each with its own keys [1]. Destruction 

or compromise of a single center will 

not affect the other centers. 

security can also be improved if 

all the user keys are encrypted with a 

master key by the center. The master 

key must still be stored securely (and 

suitable provision made for its backup), 

but the (encrypted) user keys can be 

stored anywhere. This approach is used 

by IBM (23). 

This protocol does not fully solve 

the key distribution problem: some sort 

of key distribution method must be used 

between each user and the center to es-

tablish the original keys. This problem 

is nontrivial because no electronic com-

munications can be used and inexpensive 

physical methods, e.g., registered mail, 

offer only moderate security. The use 

of couriers is reasonably secure, 

although more expensive. 



3. Simple Public Key Distribution 

This is the most basic application 

of public key systems [1,5,6,7,8]. Its 

purpose is to allow A and B to agree on 

a common key k without any prior secret 

arrangements, even though E overhears 

all messages. A randomly computes enci­

phering and deciphering keys EA and DA, 

and sends EA to B (and E). B picks the 

random key, k, and transmits EA(k) to A 

(and E). A computes DA(EA(k» = k. A 

then discards both EA and DA, and B dis­

cards EA. The key in future communica­

tions is k. It is used to encrypt all 

further messages using a conventional 

encryption function. Once A and B have 

finished talking, they both discard k. 

If they later resume the conversation 

the process is repeated to agree o~ a 

new key k~. 

This protocol is very simple, and 

has a great deal to recommend it. 

First, no keys and no secret materials 

exist before A and B start communicat-

ing, and nothing is retained after they 

have finished. It is impossible for E 

to compromise any keys either before the 

conversation takes place, or after it is 

over, for the keys exist only during the 

conversation. 
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The disadvantage of this protocol 

is that E might actively interfere with 

the exchange of keys. Worse yet, E can 

force a known k on both A and B. 

4. Authenticated Public Key Distribution 

The now classic protocol [1] for 

secure and authenticated communications 

between A and B is: A and B generate EA 

and EB and make them public, while keep­

ing DA and DB secret. The public enci­

phering keys of all users are entered in 

a public file, allowing easy and authen-

ticated access to EX for any user, x. 
If A and B wish to agree on a com-

mon key k, then each sends a (session) 

key to the other by enqrypting it with 

the others public key. The two keys 

thus agreed on are combined and used to 

encrypt further messages. 

At the end of this protocol, A and 

B have agreed on a common key, k, which 

is both secret and authenticated. 

This protocol suffers from two 

weaknesses. First, entries in the pub-

lic file might be altered. This can be 

dealt with both by good physical securi-

ty, or by using new protocols (see sec-

tions 5 and 6) for authenticating the 

entries in the public file. 
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Second, secret deciphering keys can 

be lost. This problem must ultimately 

be solved by good physical security. 

5. Public Key Distribution with Certifi-

Kohnfelder [3] first suggested that 

entries in the public file be authenti-

cated by having a Central Authority (CA) 

sign them with DCA. He called such 

signed entries certificates. 

The protocol with certificates is 

the same as the authenticated protocol, 

except that A and B can now check the 

entries in the public file by checking 

each other~s certificates. This proto­

col assures A and B that each has the 

other~s public enciphering key, and not 

the public enciphering key of some im-

poster. 

The security of this protocol rests 

on the assumptions that the secret deci­

phering keys of A, B, and CA have not 

been compromised~ that A and B have 

correct copies of ECA (to check the 

signed certificates); and that CA has 

not issued a bad certificate, either 

deliberately because it was un-

trustworthy, or accidentally because it 

was tricked. 
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ECA can be published in newspapers 

and magazines, and sent over all avail-

able communication channels: blocking 

its correct reception would be yery dif­

ficult. 

If DCA is compromised, then it is 

no longer. possible to authenticate the 

users of the system and their public en-

ciphering keys. The certificates are 

now worthless because the (unauthorized) 

person who has learned DCA can produce 

false certificates at will. 

6. Public Key Distribution with ~ Au­

thentication 

Key distribution with certificates 

was vulnerable to the criticism that DCA 

can be compromised, resulting in system 

wide loss of authentication. This prob­

lem can be solved by using tree authen-

tication [13]. 

Again, this protocol attempts to 

authenticate entries in the public file. 

However, instead of signing each entry 

in the public file, this protocol ap­

plies a one way hash function, H, to the 

entire public file. Even though H is 

applied to the entire public file, the 

output of H is only 100 or 200 bits 

long. The (small) output of H will be 

called the root, R, of the public file. 



If all users .of the syst~m know R, then 

all users can authenticate the correct-

ness of the (whole) public file by com­

puting R = H(public file). Any attempt 

to introduce changes into the public 

file will imply R ; H(altered public 

file), an easily detected fact. 

This method effectively eliminates 

the possibility of compromising DCA be­

cause no secret deciphering key exists. 

Because the public file wi.ll be sub­

jected to the harsh glare of public 

scrutiny, and because making alterations 

in the public file is effectively impos­

sible after it has been published, a 
.. ' 

high degree of assurance that it is 

correct can be attained. 

This method is impractical as stat­

ed. Fortunately, it is possible to 

selectively authenticate individual en­

tries in the public file without having 

to know the whole publi~ file by using 

Merkle#s -tree authentication,- [13]. 

The essence of tree authentication 

is to authenticate the entire public 

file by Rdivide and conquer.- If we de­

fine Y = public file = Yl , Y2, Yn' 

(so the ith entry in the public file is 

denoted Yi' and B#s entry is YB); we can 

define H(public file) = H(!) as: 

H(!) = F( H(first half of !), 

H(second half of !) ) 
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Where F is a one way function. 

If A wishes to confirm B#s public 

enciphering key, then A need only know 

the first half of the public file, 

(which is where YB appears) and H(second 

half of public file) which is only 100 

bits long. A can compute H(public file) 

knowing only this information, and yet A 

only knew half the entries in the public 

file. 

In a similar fashion, A does not 

really need to know all of the first 

half of the public file, for 

H(first half of public file) = 
F( H(first quarter of public file), 

H(second quarter of public file) 

All A needs to know is the first quarter 

of the public file (which has YB), and 

H(second quarter of public file). 

By applying this concept recursive­

ly, A can confirm YB in the public file 

knowing only R, 1092 n intermediate 

values, and YB itself. The information 

needed to authenticate YB, given :hat R 

has already been authenticated, lies 

along the path from R to YB and will be 

called the authentication path. 

These definitions are illustrated 

in figure 1, which shows the authentica-

tion path for Ys . 

.. 



-----------------------------
For a more detailed discussion the 

reader is referred to [13]. 

Using tree authentication, user A 

has an authentication path which can be 

used to authenticate user A's public en­

ciphering key, provided only that R has 

already been authenticated. An "authen­

tication path" is a new form of certifi-

cate, with ECA replaced by R. 

This protocol can only be comprom-

ised if: DA or Os is compromised, or if 

R is not correctly known by A or S, or 

if there is a false and misleading entry 

in the public file. 

The latter two are easily detect­

able. If either A or S has the wrong R, 

they will be unable to complete the pro­

tocol with any other legitimate user who 

has the correct R, a fact that will be 

quickly detected. 

Secause the public file is both 

open to public scrutiny and unalterable, 

false or misleading entries can be ra-

pidly detected. In practice, a few 

users concerned with correctness can 

verify that the public file satisfies 

some simple global properties, i.e., 

each user name appears once and once 

only in the entire public file; indivi­

dual users can then verify that their 

own entry is correct, and need not both­

er examining the rest of the public 

file. 

127 

The only practical method of 

compromising this protocol is to 

compromise DA or OS. A user's security 

is thus dependent on himself and no one 

else. 

7. Digital Signatures 

The use of public key cryptosystems 

to provide digital signatures was sug-

gested by Diffie and Hellman [1] • 

Rivest, Shamir and Adleman [8) have sug-

gested an attractive implementation. 

Signature tech' b nlques ased on methods 

other than public key t cryp osystems have 

been suggested by Lamport and Diffie 

[l,24}, Rabin [15}, and Merkle (13). 

Digital signatures, whether based 

on conventional encryption functions, on 

public key cryptosystems, on probabilis­

tic computations, or on other techniques 

share several important properties in 

common. These common properties are 

best illustrated by the f ollowing now 

classic example. 

A wishes to place a purchase order 

with his stock broker S. A, on the 

Riviera, cannot send a written order to 

S in New York in time. All that A can 

quickly send to S is information, . l.e., 

a sequence of bits, but S is concerned 

that A may later disclaim the order. A 
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must somehow generate a sequence of bits 

(a digital signature) whlch will con­

vince B (and if need be a judge) that A 

authorized the order. It must be easy 

for B to validate the digital signature, 

but impossible for him (or anyone other 

than A) to generate it (to prevent 

charges that B was dabbling in the mark­

et illegally with A~s money). 

There are digital signature schemes 

which do not involve public key cryp­

tosystems but it will be convenient no­

tationally to let A sign message m by 

computing the signature, DA(m). Check-

ing a signature will then be done by 

produces an illegible message (random 

bits) then the signature is rejected as 

invalid. This notation is somewhat 

misleading because the actual method of 

generating and validating signatures can 

be very different from this model; it is 

retained because it is widely known"and 

because we will not discuss the differ-

ences among different digital signature 

methods, only their common properties. 

Digital signature protocols are na­

turally divided into three parts: a 

method of signing messages used by A, a 

method for authenticating °a signature 

used by B, and a method for resolving 

disputes, used by the judge. It is im­

portant to note that two protocols that 

differ only in the method of resolving 
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disputes ~ different. Failure to 

understand this point has led to confu­

sion in the literature [17,20]. 

We now turn to specific digital 

signature protocols. 

8. ~ Conventional Signature Protocol 

A conventional ftsignature W protocol 

relies on the observation that if A and 

B trust some central authority CA, and 

if A and B have a secure method of com-

municating with CA, then A can "sign n a 

message simply by sending it to CA and 

relying on CA to adjudicate disputes. 

This approach is defended by some [17]. 

This protocol is subject to the 

weaknesses of centralized key distribu­

tion (described earlier). 

9. The Basic Digital Signature Protocol 

The first public key based digital 

signature protocol [1], proceeded by 

having A sign message m by computing 

DA(m) and giving it to B as the signed 

1 ° 
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message. B (or a judge) can compute 

m, thus confirming the 

correctness of the signed message. A is 

held responsible for a signed message if 

and only if it can be verified by apply­

ing A's public enciphering key to it. 

This protocol can be criticized 

[16,17,20] on two grounds: First, the 

public file might have been tampered 

with. Methods of authenticating the 

public file, discussed previously under 

key distribution protocols, solve this 

problem. 

A second criticism is that A has no 

recourse should his secret deciphering 

key be compromised and made public. 

Anyone can sign any message they desire 

with A's compromised DA, and A will be 

held responsible. 

It seems clear that A will only 

agree to this digital signature protocol 

if he can provide very good physical 

security for DA• The loss to A if DA is 

compromised can be substantial. 

A different method of solving this 

problem is to alter the dispute resolu­

tion protocol so that A is not held 

responsible for his signature if his 

secret deciphering key is compromised 

and made public. 

The fact that altering the di&pute 

resolution procedure creates a different 

protocol has not been fully appreciated, 

and the preceding two protocols have 
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been confused with each other for this 

reason. Some criticism of "the" public 

key digital signature protocol has actu­

ally been of this second protocol, and 

failed to consider the first protocol at 

all. 

If we.assume that A knows DA, then 

under the second protocol A can make DA 

public and effectively disavow the 

signed message. For this reason, some 

critics have argued that this protocol 

is inadequate. 

If we assume that A does not know 

DA, then he is unable to disavow his 

signature under this protocol. It is 

easy to design a system in which this is 

the case. 

The major difference between the 

second protocol and the first is in the 

division of risk: in the second proto-

col B will be left holding the bag if 

A's signing key is compromised. Clear-

ly, B must be given assurances that this 

condition is unlikely before he will be 

willing to use this protocol. 

10. The Time-Stamp Protocol 

A protocol that would allow A to 

report loss or theft of DA and disclaim 

messages signed after the reported loss 

yet force A to acknowledge the validity 

of signatures made before the reported 

loss must involve the concept of time. 



We introduce time into the following 

protocol by using time-keepers who can 

digitally time-stamp information given 

to them. We assume that both A and B 

have agreed on a set of acceptable 

time-keepers whose time-stamps will be 

accepted in dispute resolution. 

If A can report that DA has been 

lost, then he must report this fact to 

some agent who will be responsible for 

answering queries about the current 

status of DA, i.e., has it been lost or 

not. For simplicity, we shall assume 

this role is played by the t central au-

thority, CA. CA will sign messages 

stating that A's secret deciphering key 

has not been compromised as of the 

current time. These signed messages 

will be called "validity-checks." 

In the time stamp protocol, user A 

signs message m by computing DA(m) and 

sending it to B. B then has a time­

keeper time stamp the message and ob-

tains a validity-check from CA. 

has already been reported lost B rejects 

the signature, otherwise he accepts. 

In dispute resolution, the judge 

holds that a message has been validly 

signed if and only if it can be checked 

by applying A's public enciphering key 

AND it has been time-stamped prior to 

any reported loss of DA• 

This protocol provides very good 

assurance to all parties that they have 
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been dealt with fairly. 

The major disadvantage of this pro­

tocol, as compared with the basic digi­

tal signature protocol, is the require­

ment that B obtain both a time-stamp and 

a validity-check, presumably in real 

time. These requirements force the use 

of a communications network, which both 

increases expense and decreases relia-

bility. 

If B is willing to obtain the 

time-stamp and the validity-check after 

the transaction has been completed, 

i.e., within a few days, an off-line 

system can be used. This modified pro­

tocol could be used by B either as a 

fail-soft protocol during communications 

outages, or as the standard protocol if 

communication costs are too high. 

Off-line operation is cheaper ahd 

more reliable, but it exposes B to some 

risk: A might have recently reported 

the loss of DA and B would not know 

about it. If physical security for 

secret deciphering keys is good, this 

risk should be minimal. 

11. Witnessed Digital Signatures 

If the value of a transaction is 

high enough, it might be desirable to 

have a witness physically confirm that A 



signed message m. The witness, W, would 

compute DW("I, W, physically saw A agree 

to and sign message m.n). It would be 

necessary for A and B to agree in ad-

vance on acceptable witnesses. 

The primary advantage of this pro­

tocol is that it reduces B~s risk. The 

primary disadvantage is that it forces A 

to find a (physically present) witness 

to confirm the transaction. 

12. Digital Signature Applications ~ 

Involving Dispute 

Not all applications of digital 

signatures involve contracts between two 

potentially disputing parties. Digital 

signatures are also an ideal method of 

broadcasting authenticated messages from 

a central source which must be confirmed 

by many separate recipients, or repeat­

edly confirmed by the same recipient at 

different times to insure that the mes-

sage has not been modified. 

One example of such an application 

is the distribution of network software 

to individual nodes of a .communications 

network. It would be clearly undesir-

able for any node to start executing the 

wrong software. On the other hand, it 

is very desirable to send updates to the 

nodes over the network itself. The ob-
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vious solution is for updates to be di-

gitally signed by an appropriate network 

administrator, and for the nodes to 

check the digital signature prior to ex-

ecuting them. 

This example leads naturally to 

another ap~lication of digital signa-

tures in operating system security. A 

major risk to the security of an operat­

ing system is the possibility that the 

system code that it is executing today 

is not the same that it was executing 

yesterday: someone might have put a trap 

door into the operating system that lets 

them do anything they please. To guard 

against this possibility, the operating 

system could refuse to execute any code 

in privileged mode unless that code had 

been properly signed. Carried to its 

logical conclusion, the operating system 

would check the digital signature of 

privileged programs each time they were 

loaded into central memory If this check 

were implemented in hardware, it would 

be impossible for any software changes 

to subvert it. The machine would be 

physically incapable of executing code 

in privileged mode unless that code was 

signed. 

If privileged programs are digital­

ly signed by the programmer who origi­

nally wrote them, as well as by various 

supervisory levels, and if the computer. 

is physically unable to execute unsigned 



code in privileged mode, then it is pos­

sible to have complete assurance that 

the privileged programs running on the 

computer Tight now have not been modi­

fied since they were given there final 

checkout and signed by the programmer. 

Of course, this does not necessarily 

mean that the operating system is 

secure, but it does eliminate a major 

class of worries. 

13. Conclusions 

This paper has briefly described a 

number of cryptographic protocols. Cer-

tainly, these are not the only ones pos­

sible; however, they are valuable tools 

to the system designer: they illustrate 

what can be achieved and provide feasi­

ble solutions to problems of recur$ing 

interest. 

Further constructive work in this 

area is very much needed. 
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