
A DISTRIBUTED BLOCKCHAIN LEDGER FOR SUPPLY CHAIN

A Thesis

Submitted to the Faculty

of

Purdue University

by

Haoyan Wu

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electric and Computer Engineering

August 2017

Purdue University

Indianapolis, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF THESIS APPROVAL

Dr. Zina Ben Miled

Department of Electrical and Computer Engineering

Dr. Brian King

Department of Electrical and Computer Engineering

Dr. Dongsoo Kim

Department of Electrical and Computer Engineering

Approved by:

Dr. Brian King

Head of Departmental Graduate Program

iii

This thesis is dedicated to my parents, Baoquan Wu and Lijuan Kong, who have

continuously supported and encouraged me when I was facing the challenges of

graduate school and life. Without their unconditional love and wise guidance, it

would have been hard for me to accomplish this work.

iv

ACKNOWLEDGMENTS

I would like to thank my graduate advisor, Dr. Zina Ben Miled, for her guidance.

Feedbacks from Dr. Brian King and Dr. Dongsoo Kim have been valuable in improv-

ing this research work. Special thanks to Mr. Jeffrey Tazelaar and Mr. John Wassick

for their advice and clarifications on the relevant research issues. I also would like to

extend my thanks to my friend, Jerry Li for his support.

v

TABLE OF CONTENTS

Page

LIST OF FIGURES . vii

LIST OF ALGORITHMS . ix

ABSTRACT . x

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Background . 1

1.3 Approach . 2

1.4 Organization . 3

2 RELATED WORK . 4

2.1 Supply Chain . 5

2.2 Bolckchain . 5

2.3 Database Management Systems . 7

3 SYSTEM MODEL . 11

3.1 Physical Distribution Workflow . 11

3.2 Architecture Overview . 12

3.3 Events . 13

3.4 Advanced Data Structure . 14

3.5 EDI-214 Standard . 18

3.5.1 Interchange Envelope of EDI-214 19

3.5.2 Functional Group Envelope . 19

3.5.3 Transaction Envelope . 21

3.5.4 Shipment Status . 22

3.6 Blockchain . 24

3.7 Processes . 27

vi

Page

3.7.1 Private Event Process . 28

3.7.2 Public Event Process . 28

3.7.3 Building Block Process . 31

4 IMPLEMENTATION . 34

4.1 Index Server . 34

4.2 Nodes and External Monitors . 35

4.3 Processes . 36

4.3.1 Private Event Process . 37

4.3.2 Public Event Process . 40

4.3.3 Building Block Process . 44

4.4 Testing . 46

5 CONCLUSION . 54

REFERENCES . 56

vii

LIST OF FIGURES

Figure Page

2.1 SQL Example . 9

2.2 NoSQL Example . 10

3.1 Node Information Data Structure . 14

3.2 Participants Information Data Structure 15

3.3 Monitors Information Data Structure . 16

3.4 Private Genesis and Custody Event Data Structure 16

3.5 Public Events Data Structure . 17

3.6 Blocks Data Structure . 17

3.7 Interchange Envelope of EDI214 Data Structure 19

3.8 Header and Trailer of Interchange Envelope 19

3.9 Functional Group Envelope Data Structure 20

3.10 Header and Trailer of Functional Group Envelope 20

3.11 Attributes of Functional Group Header . 20

3.12 Transaction Envelope Data Structure . 21

3.13 Header and Trailer of Transaction Envelope 21

3.14 Attributes of B10 . 22

3.15 Loops for Shipment Status . 22

3.16 Loop1100 Data Structure . 23

3.17 Loop1200 Data Structure . 23

3.18 Attribute of N1 . 23

3.19 Attributes of OID . 24

3.20 Private Event Process . 29

3.21 Public Event Process . 30

3.22 Building Block Process . 33

viii

Figure Page

4.1 Steps of the Test Scenario . 47

4.2 PrivateEvents Collection of Node A after Event 1 is Received 49

4.3 tempPublicEvent Collection of Node A after Event 1 is Received 49

4.4 tempPublicEvent Collection of Node A after Event 2 is Received 50

4.5 New Document in tempPublicEvent Collection of Node A after Event 3 is
Received . 51

4.6 Candidate Block in Node A . 52

4.7 Candidate Block in Node A cont. 53

ix

LIST OF ALGORITHMS

Algorithm Page

4.1 Query Node’s IP address . 34

4.2 Update Node Information . 35

4.3 Listen Function . 37

4.4 Accept Connection . 37

4.5 Receive Private Events . 38

4.6 Insert Private Events . 39

4.7 Send Private Events . 39

4.8 Translate Private Events to Public Events 40

4.9 Hash Private Event . 40

4.10 Receive Public Events . 41

4.11 Hash Monitor Data . 41

4.12 Send Public Events . 42

4.13 Insert Public Events . 43

4.14 Hash Public Event . 44

4.15 Build Block . 45

4.16 Hash Blocks . 46

4.17 Send Candidate Block . 46

x

ABSTRACT

Wu, Haoyan. MSECE., Purdue University, August 2017. A Distributed Blockchain
Ledger for Supply Chain. Major Professor: Zina Ben Miled.

Affordable and reliable supply chain visibility is becoming increasingly important

as the complexity of the network underlying supply chains is becoming orders of

magnitudes higher compared to a decade ago. Moreover, this increase in complexity

is starting to reflect on the cost of goods and their availability to the consumers.

Optimizing the physical distribution phase in supply chain by providing increased

visibility to trading partners can directly reduce product cost. Current supply chain

information systems often lack the ability to cost-effectively relay ground truth in-

formation in near real time to all stakeholders and most importantly to the supplier

and the customer during the transport of the shipment. This thesis presents a solu-

tion that addresses this gap through a distributed architecture. The solution enables

small, medium and large businesses to interact in a dynamic and shipment-centric

manner through a private blockchain sub-ledger that digitizes the transfer of custody

for each shipment. Information in this private ledger is augmented by a public event

ledger that reflects the movement of the shipment in real time. Third party monitors

are engaged in the validation of the geolocation of the shipments by posting their

physical proximity in the form of events to the public ledger.

1

1. INTRODUCTION

1.1 Motivation

Supply chains span many geographies, modes and industries and involve several

phases where data flows in both directions from suppliers, manufacturers, distribu-

tors, retailers, to customers. This data flow is necessary to support critical business

decisions that may impact product cost and market share. Current centralized supply

chain information systems are unable to support the needed real-time transparency,

scalability and security. This thesis proposes a distributed private ledger solution

for the sharing of information among trading partners in pseudo real-time. The pro-

posed system uses a distributed ledger which is based on blockchain to document and

exchange custody events related to shipments. These events are only shared among

trading partners, thereby protecting the privacy of the participants. A private ledger

is created for each shipment allowing the overall network to support an increasing

number of shipments through a hybrid peer-to-peer communication model.

1.2 Background

Supply chain consists of several phases involving several companies. These phases

include planing, development, manufacturing, delivery and returns [1]. Planing is the

first phase of the supply chain process and focuses on meeting customer demands.

The second phase is concerned with a development plan for the product including

marketing and pricing. The manufacturing phase includes design, production, test-

ing and packaging. The first two steps are usually handled by an enterprise resource

planning system (ERP) [2]. The third phase is handled by several product life cy-

cle management information systems (PLMS) [3]. The fourth phase focuses on the

2

delivery of the products. It starts with a pre-shipment step which consists of the

preparation of product for shipment by the supplier followed by a transportation step

which is primarily managed by a carrier.

There are also three main flows in supply chain: material flow, information flow

and capital flow. Material flow is concerned with the transfer of the physical product

from the supplier to the customer via a carrier. Information flow is the digital thread

that documents the transfer of the product. This digital thread includes the order

information and the shipment information (e.g., shipment status, GPS location, etc.).

Capital flow is concerned with payment and transfer of the ownership of the asset.

Supply chain visibility refers to the accurate and real-time delivery of informa-

tion to all stakeholders. The benefits of an increasing supply chain visibility include

reduced business and supply chain risks, improved lead times and performance, and

early identification of shortage and product quality problems [4]. Lack of visibility

and transparency can cause inaccurate forecasting and unexpected delays leading to

increased product cost.

1.3 Approach

This thesis focuses on developing a distributed and scalable data model for the

sharing of supply chain information during the transport phase of supply chain. This

model is based on the blockchain technology which is implemented using a heteroge-

nous set of NoSQL database management systems. The approach addresses the het-

erogeneity across the databases of the different nodes participating in the information

flow by using the EDI-214 standard [5] translated into a JSON data representation [6].

EDI-214 is a standard for the electronic exchange of the transportation carrier ship-

ment status.

3

1.4 Organization

Chapter two provides a summary of related work with a focus on blockchain,

NoSQL and supply chain. Chapter three introduces the data model used in the pro-

posed solution and describes how events are translated into records in the distributed

ledger. Chapter four presents the implementation of the data model for X86 nodes by

using MongoDB [7] and for mobile nodes by using Couchbase Lite. This chapter also

discusses how interoperability among the different database management systems is

achieved in the proposed system by using the EDI-214 standard. Moreover, the chap-

ter includes examples of practical test scenarios of the proposed framework. Chapter

five concludes with the main contributions of this work and proposes direction for

future work.

4

2. RELATED WORK

In the past three decades, the digitization of information and its exchange went

through several phases that were driven by demands and technological innovations.

Going from paper-based records within an institution to isolated applications that

cover one or more aspect of the business was an initial phase. During this phase,

multiple applications and underlying databases were used for accounting, human re-

sources, maintenance, etc. This phase was followed by a trend towards enterprise

resource planning (ERP) systems that integrated the digital thread across various ac-

tivities within each institution including accounting, human resources management,

payroll, maintenance, warehousing and logistics with varying emphasis depending on

the core business of the organization. ERPs facilitate information flow between all

business functions within an organization and manage transactions with partner or-

ganizations [8]. Additional advances and demands led to the globalization of these

ERP systems especially for multi-nationals and corporate groups. Moreover, the dig-

ital thread started to extend to cover the external relations of the organization with

its customers (e.g., customer portals and customer relations management systems

- CRMs) and its partners (e.g., suppliers, financial institutions, service providers).

This latter extension was facilitated by the emergence of the cloud computing busi-

ness model which allows different partners to exchange information using a common

platform. These platforms are nowadays seamlessly integrated within the business

processes internal to an organization. Compared to their predecessors, these new

systems offer significant improvements in efficiency and transparency. However, with

the recent advances and ubiquity of sensor technology, there are increasing demands

for higher efficiency and transparency.

5

2.1 Supply Chain

E2Open [9] and SAP [10] are examples of leading edge supply chain systems that

provide well-developed functionalities including pseudo real-time shipment informa-

tion and interoperability with multiple enterprise resource planning (ERP) systems.

These systems are cloud-based and adopt a centralized and often complex software

and hardware architecture. Given the large amount of traffic and the variety of

stakeholders (i.e., small, medium and large businesses) that need to be supported

by a global supply chain system, a centralized architecture has limitations with re-

spect to both scalability and affordability. As a result of these limitations, small and

medium business have a difficulty penetrating new and well established markets.

Supply chain operating networks (SCONs) are platforms that enable multiple part-

ners to exchange information. SCONs are cloud-based solutions and often seamlessly

integrate with information systems local to each partner. They are commonly pow-

ered by solutions such as E2Open and SAP. Unfortunately, the value derived and the

success of SCONs are directly proportional to the level of participation by a given in-

dustry sector or trading group. Furthermore, the competitiveness of a given company

is directly related to its ability to venture into new industries and sectors which today

requires the capability to support multiple SCONs, often leading to inefficiencies and

high costs [11].

The main standard used in the exchange of information among trading partners

is the EDI standard [12]. SCONs, for instance, use this standard. The EDI standard

digitally captures the content of various documents used in the supply chain includ-

ing invoices, purchase orders, bill of lading as well as messages such as the Carrier

Shipment Status Message.

2.2 Bolckchain

Blockchain is a distributed database that maintains a continuously growing list of

records, called blocks, secured from tampering and revision [13]. Blockchain was first

6

used to support the digital currency BitCoin [14]. It was later adopted by other digital

currencies and was the subject of highly publicized successes and failures. At the core

of the blockchain technology is a distributed ledger with two types of transactions. A

single genesis transaction which creates value and a transfer transaction that transfers

value from one party to another. Each transaction is digitally signed by the issuer and

posted to the global ledger. A group of transactions are then collected into a block,

the block is validated by a third party (a miner) and is locked. This mechanism

represents the strength of the blockchain technology. Each block in the chain is

immutable since it is linked to its predecessor and any change to any of the blocks

invalidates all the blocks downstream in the chain. Furthermore, the more mature

the block is (i.e., the longer it has been in the global ledger chain), the greater is its

integrity. Each participant in the global network keeps a copy of the ledger and every

time a new block is created, it is broadcasted to all the participants that add it to

their local copy of the ledger.

In general, participation in the global ledger is anonymous as each party is iden-

tified by a digital ID. From a business perspective, issuers and beneficiaries are en-

couraged to participate in the ledger because of this anonymity, the lack of a central

controlling party, reduced transaction fees and the real-time execution of the transac-

tions. Miners are also incentivized because they receive a fraction of the transaction

fee for every block they validate.

The blockchain technology can be implemented either on a distributed network

architecture or a centralized cloud-based architecture. The distributed architecture

often adopts a peer-to-peer network communication model where all nodes in the

network have equivalent roles and privileges. Nodes or peers in the network coop-

erate to service each others request with a limited or no centralized management.

Several well-known software applications use this architecture including Bitcoin, the

file sharing applications bittorrent [15], Napster [16] and the messaging application

Skype [17].

7

Blockfreight is an example of supply chain solution that implements blockchain

on a distributed peer-to-peer network. It proposes an end-to-end container track-

ing solution. There are several differences between Blockfreight and the framework

proposed in this thesis. First, Blockfreight is a solution for international trade (i.e.,

mostly sea shipping) while we focus on local trade (i.e., truckload shipping). This

difference causes a significant divergence in the requirements of the two systems. For

instance, transparency in international trade may be measured in days whereas for

local trade it is measured in hours. Second, Blockfreight relies on an open distributed

global ledger. Even though participation in the global ledger is anonymous, we believe

that this participation raises privacy concerns with most businesses. Our proposed

solution addresses privacy issues by combining a private shipment-centric custody

sub-ledger with a movement tracking general ledger.

Blockchain solutions for supply chain have also been proposed over centralized

networks (e.g., [18]). These solutions avoid the challenges associated with an open

and distributed peer-to-peer architecture but also dismiss the intended resilience,

scalability and affordability of the distributed network.

In general, current research around blockchain focuses on facilitating three main

functionalities: tracking (e.g., provenance, proof of origin), transfer (e.g., smart con-

tracts) and payment (e.g., digital currency). Recently, Ethereum [19], a peer-to-peer

blockchain programming language has been proposed to support all three.

2.3 Database Management Systems

Relational databases dominated for a very long time and where the de-facto data

model for most data management solutions. However, demands for solutions that

can accommodate flexible schema with heterogeneous data started to increase. These

demands lead to the emergence of NoSQL databases.

The main difference between NoSQL databases (e.g., MongoDB and Couchbase

Lite [20]) and relational databases is in the way data is organized and stored. While

8

relational databases store data in tables consisting of columns of attributes and rows

of records, NoSQL databases store data in documents. Each document contains one or

more fields with a typed value such as string, data, array or even a nested document.

A document is a record and represents the basic unit of data in a NoSQL database. A

collection represents a group of documents and may be considered as the counterpart

of a table in a relational database.

The schema of a database is the structure of the objects in the database and

it is often derived from business requirements. For a relational database, a schema

consists of a set of tables. For example, a simplified database for orders (Fig. 2.1)

may consist of three tables: Orders which includes order information, productDetails

which includes the information related to a product and orderLinker which connects

the first two tables. Once designed and populated, the schema is rigid and cannot be

easily modified. Adding or modifying the attributes of the schema requires a complex

migration from the source schema to the target schema. This lack of flexibility places

a significant burden on the database designer to make sure that the relational schema

can accommodate current and potential future requirements.

NoSQL databases avoid the above limitation by foregoing the use of a schema.

NoSQL databases are in fact also known as schemaless databases or databases with

dynamic schema. There is no predefined relations in the NoSQL databases. For

example, mongoDB provides a document data model that allows the combination of

any type of data [21].

Fig. 2.1 and Fig. 2.2 compare the two types of databases with a specific example.

The SQL database uses three tables to store order information. As shown in Fig.

2.1, the orders table has several attributes related to the basic information of orders,

where orderID is the primary key. The productDetail table contains attributes related

to the individual products where productID is the primary key. The table orderLinker

links the orderID table and the productDetails table and uses two foreign keys. The

third table is needed in order to meet the normalization requirement of database

management systems since one order may have multiple products.

9

Fig. 2.1. SQL Example

The document-oriented NoSQL database uses one JSON formatted document for

each order. Documents are grouped into collections. Collections are containers that

hold related documents. Fig. 2.2 shows the structure of a document for a given order.

Since NoSQL databases support embedded structure, an array in the document called

product can hold multiple sub-documents related to the product information. With

this structure, if a query for a product is issued, there is no need to perform a join.

The join operation is however necessary in SQL databases. A single document can

contain all information about an order in a NoSQL database. Furthermore, if new

fields need to be added, they are simply inserted in the database. In contrast, adding

a field in an SQL database requires the redesign of the schema and the migration of

the data from the old to the new database. In summary, the benefits of a NoSQL

database include the ability to handle unstructured data and to adapt to evolving

business requirements.

10

{

"orderlD": "57dafad59b8f13c51c80ad45",

"cusotmerlD": "57dafad59b8f13c51c80ad46",

"carrierlD": "57dafad59b8f13c51c80ad47",

"supplierlD": "57dafad59b8f13c51c80ad48",

"origin": "Indianapolis",

"destination": "San Francisco",

"pickupTime": "04/05/2017 16:40 PDT",

"ETA": "04/07/2017 17:00 EDT",

"orderDate": "04/01/2017 10:00 EDT",

"product": [

{

"prodcutlD": "77cefad69b8333c51990rf11",

"prodcutName": "water",

"quantityPerUnit": "10",

"unitPrice": "$10.34",

"status": "liquid"

},

{

"prodcutlD": "77cefad69b8333c51990rf12",

"prodcutName": "butter",

"quantityPerUnit": "12",

"unitPrice": "$10.00",

"status": "solid"

}

{...}

]

}

Fig. 2.2. NoSQL Example

11

3. SYSTEM MODEL

The proposed supply chain visibility framework is motivated by real industry demands

and designed according to actual business requirements. The framework consists of a

set of dynamic sub-ledgers and a central public ledger. The sub-ledgers are private to

the trading partners and a sub-ledger is created for each shipment. Participation in

the sub-ledger is based on the partners involved in the execution of the corresponding

purchase order. The public ledger is open to all and contains tracking information

for all trucks transporting shipments. Both the sub-ledgers and the public ledger are

distributed and each participating node keeps a copy of the ledger of interest. This

chapter describes the data model used for both type of ledgers and the mechanism

used to keep the information in these ledgers up-to-date.

3.1 Physical Distribution Workflow

The focus of the proposed system is to provide real-time visibility during the

physical distribution segment of the supply chain. Physical distribution is concerned

with the transfer of goods or products from the supplier to the customer. The process

underlying this transfer includes several steps and various stakeholders. In this thesis,

we restrict the trading partners to only three stakeholders, namely, the supplier, the

customer and the carrier. Typically, several other stakeholders are involved including

more than one carrier as well as freight forwarders and freight brokers.

Each physical distribution transfer begins with a customer issuing a delivery note.

Once the delivery note is received by the proposed system, a shipment centric peer-

to-peer sub-network is dynamically established to include the customer, the carrier

and the supplier. Subsequently, the order information is forwarded to the partners

involved in the shipment. Once the shipment is picked up, events are generated to

12

update the status of the shipment and this information is shared with stakeholders

until the shipment is delivered to its destination. For example, an on-board message

is not only processed internally by the carrier but also sent to the supplier and the

customer. The physical distribution process ends with the customer confirming the

receipt of the goods.

3.2 Architecture Overview

The architecture of the proposed hybrid peer-to-peer physical distribution (HP3D)

framework consists of a collection of dynamic sub-networks. These sub-networks are

created on demand, emulate the end-to-end movement of the shipment and terminate

when the delivery of goods is completed. Each sub-network allows stakeholders to

share information related to a given shipment and provides them with pseudo real-

time visibility in the physical distribution segment of the supply chain. There is also a

global network that is open to all partners as well as third-party monitors. This global

network is persistent and does not terminate. It is used as a timestamp and a proof

of record for the events related to all shipments. There are four types of participants

in HP3D: index server, peers, administrative nodes and external monitors.

The index server is a central directory that maintains the IP addresses for all the

nodes in the network. It also assigns a unique ID to each participant. Peers are

nodes that can take on different roles in different shipments (e.g., supplier, customer,

or carrier). However, all the peers share a unified architecture regardless of their

roles. Peer applications have a three-tier architecture consisting of:

• A presentation tier which allows the users to interact with the proposed system

such as submit or review incoming events, communicate with the index server

and register in the sub-network.

• A middle tier which handles and processes user requests and communicates with

the other peers in the network.

13

• A data tier which stores and maintains the shipment-centric sub-ledgers.

A special node, called administrative node, is also needed in the HP3D. This node

has the same three-tier architecture as the other nodes. Each trading partner has

one administrative node which is responsible for communicating with the enterprise

resource planning system (ERP). The administrative node participates in all sub-

network involving the associated partner and maintains a permanent record of all

information exchanges related to the partner’s shipments.

Third party external monitors are the fourth type of participants in the proposed

system. They are engaged in the validation of the geolocation of the shipments by

posting their physical proximity in the form of events to the public ledger. The

external monitors have an architecture similar to that of the peers with the exception

of the presentation tier since the monitors do not need to query shipment data.

3.3 Events

The proposed framework supports three types of events:

• Genesis event: This event indicates the start of a shipment. It is initiated

by the administrative node, transformed into JSON format and broadcasted

to all trading partners. Each partner that is participating in the shipment,

stores this information into its local database in the form of a document. Since

the administrative node communicates with the ERP which is responsible for

the initiation of an order, the parser in the administrative node translates the

information from the ERP format to an EDI-214 standardized JSON formatted

message. The details of the genesis event are only accessible to the trading

partners. However, a hash value calculated from the genesis event is posted to

the public ledger.

• Custody event: This event records the custody status of the current shipment.

The custody can remain with the current holder of the shipment or transfer it

14

from one participant to another. (e.g., shipment transferred from supplier to

carrier, shipment delivered to customer by carrier). In addition to the genesis

event, the custody events form the shipment-centric private ledger which is

shared among the supplier, carrier and customer for a given shipment. Similar

to the genesis event, the hash value of each custody event is calculated and

posted to the public ledger.

• Monitoring event: Monitoring events indicate the geographical status of a ship-

ment. This information is generated by external monitors when trucks are

physically near the monitors and an information exchange is executed between

the monitors and the trucks in order to record this physical proximity. The

monitoring events are posted to the public ledger by the external monitors.

3.4 Advanced Data Structure

HP3D uses three main data structures each identifying a different type of nodes

in the network, namely: node information, participant information and monitor in-

formation.

The node information data structure is used by the peers in the network to request

services from the index server. This data structure includes seven fields as shown

below (Fig. 3.1):

type NodeInfo struct{

ReqType int

Timestamp time

IPAddress string

Key []byte

IMEI []byte

PublicKey []byte

AffiliatedCom string

NodeID bson.ObjectId ‘bson: ‘‘_id,omitempty’’ ’

}

Fig. 3.1. Node Information Data Structure

15

• Reqtype is an integer value used to denote the type of a request. It is checked by

the index server when a message is received. Reqtype can take on three integer

values: a) 0 for an incoming message which is used to update the IP address

of a node, b) 1 for an IP address query request for another node and c) 2 for

mobile node verification based on an IMEI number.

• The Timestamp field represents the time that the IP address of a given node is

updated.

• The IPAddress field is a string that records the IP address of a node.

• The Key and IMEI fields are byte arrays which are used in the mobile verifi-

cation routine.

• The PublicKey stores the public key of a node used for verifying events signa-

ture.

• AffiliatedCom is used to identify the company the node is affiliated with.

• The NodeID field contains a node ID uniquely assigned by the index server.

The OrderPart information (Fig. 3.2) is used to support the second type of

messages. The OrderPart structure uses OrderID as a unique ID and also contains a

list of all the companies associated with the order. This data structure is used in the

creation and maintenance of the dynamic sub-network associated with each shipment.

type OrderPart struct{

OrderID bson.ObjectId ‘bson:"_id,omitempty"‘

Part []Participants

}

type Participants struct{

CompanyName string

CompanyID bson.ObjectId ‘bson:"_id,omitempty"‘

}

Fig. 3.2. Participants Information Data Structure

16

The third kind of data structure is related to the monitors. MonitorInfo has three

fields as shown in Fig. 3.3. MonitorID is the unique ID of the external monitor,

MonitorIP records the IP address of a monitor and MonitorLocation is a sub-structure

that contains the geological information of the monitor. This geolocation information

is also the one that will be reported as the shipment location when the truck carrying

the shipment is physically near the monitor.

type MonitorInfo struct{

MonitorID bson.ObjectId ‘bson:"_id,omitempty"‘

MonitorIP string

MonitorLocation GPS

}

type GPS struct{

GPSCordsX string

GPSCordsY string

}

Fig. 3.3. Monitors Information Data Structure

HP3D also has three kinds of data structure for exchanging and storing events

and blocks. These are PrivateGCEvents, PublicEvents and Blocks.

PrivateGCEvents is the structure used for the genesis and custody events messages

which are exchanged across trading partners and is used to update the copy of each

private ledger in the participating nodes. This data structure (Fig. 3.4) has three

fields, a unique ID, a timestamp for the event and a sub-structure containing the

details of either a genesis event or custody event. This sub-structure is based on the

EDI-214 standard.

type PrivateGCEvents struct{

EventID bson.ObjectId ‘bson:"_id,omitempty"‘

Timestamp string

EDI214 InterchangeEnvelope

}

Fig. 3.4. Private Genesis and Custody Event Data Structure

17

PublicEvents (Fig. 3.5) is the structure used in the public ledger to represent

the three events in the proposed system. For the genesis events and the custody

events, EventHash is the field that records the hash value of the event. This hash

value is derived from the message in the EDI214 format which is discussed in Section

3.5. The trading partners could check the validity of these two types of the events

by comparing the hash value in the public ledger with the one computed from the

PrivateGCEvents data structure in the private ledger.

type PublicEvents struct{

EventID bson.ObjectId ‘bson:"_id,omitempty"‘

Timestamp string

MonitorData

EventHash [32]byte

PreEveHash [32]byte

CurEveHash [32]byte

}

type MonitorData struct{

MonitorID bson.ObjectId ‘bson:"_id,omitempty"‘

TruckID bson.ObjectId ‘bson:"_id,omitempty"‘

GeoInfo GPS

}

Fig. 3.5. Public Events Data Structure

type Blocks struct{

BlockID bson.ObjectId ‘bson:"_id,omitempty"‘

Event []PublicEvents

Timestamp string

Nonce int

PreBloHash [32]byte

CurBloHash [32]byte

}

Fig. 3.6. Blocks Data Structure

Monitoring events use MonitorData and EventHash. MonitorData (Fig. 3.5)

is a sub-structure that contains the information of the monitor, the truck and the

18

geolocation. EventHash is computed from the MonitorData. The fields PreEveHash

and CurEveHash are hash values for chaining the events and building the blocks in

the public ledger. These two values are calculated locally by each node.

Events in the public ledger are grouped into block using a data structure called

Blocks (Fig. 3.6). BlockID is the identifier of the block. Since a block may contain

multiple chained events, the Event field is an array of PublicEvents. The field Times-

tamp corresponds to the time of the block. The Nonce is an arbitrary integer value

computed for each block. It increases the complexity of computing the hash value.

For instance, the nonce can impose that CurBloHash includes a number of leading

zeros. PreBloHash has the hash value of CurBloHash from the previous block.

3.5 EDI-214 Standard

The proposed system uses the JSON format when transferring messages. These

messages adhere to the EDI-214 standard. However, the EDI-214 standard message

is traditionally represented as a string. Therefore, and in order to increase the com-

patibility of the proposed system with legacy systems, a parser is used to translate

this message from a string representation to a JSON representation and vice-a-versa.

The hierarchical structure of EDI-214 message [22] has three envelopes. An enve-

lope starts with a header and ends with a trailer. The shipment status information

is encapsulated inside the Transaction Envelope.

The proposed system uses JSON message for communication and JSON-like for-

mat BSON message for storing information into the database. Therefore, the system

uses a JSON representation of the EDI-214 message. The following data structures

are designed to accommodate EDI-214 messages.

19

3.5.1 Interchange Envelope of EDI-214

The EDI-214 message has three envelopes. The outermost envelope, labeled Inter-

change Envelope (Fig 3.7), has three fields: Header (Fig. 3.8), Envelope and Trailer

(Fig. 3.8) which are transferred to the JSON data structure.

type InterchangeEnvelope struct{

Header InterchangeHeader

Envelope []GroupEnvelope

Trailer InterchangeTrailer

}

Fig. 3.7. Interchange Envelope of EDI214 Data Structure

type InterchangeHeader struct{

ISA ISAattr

}

type InterchangeTrailer struct{

IEA IEAattr

}

Fig. 3.8. Header and Trailer of Interchange Envelope

The interchange envelope acts like a container that holds the functional group

discussed in Section 3.5.2. One or more functional group can be included in the

envelope. The Header and the Trailer have the ISA and the IEA sub-structures.

Attributes are stored as strings inside the two sub-structures and indicate the message

sender and receiver as well as the message version.

3.5.2 Functional Group Envelope

The functional group consists of similar transaction sets. This group (Fig. 3.9) is

defined by its Header and Trailer (Fig. 3.10). The transaction sets are stored inside

the Envelope.

20

type GroupEnvelope struct{

Header FunGroupHeader

Envelope []TransEnvelope

Trailer FunGroupTrailer

}

Fig. 3.9. Functional Group Envelope Data Structure

For example, the header of a functional group has the eight attributes shown in

Fig 3.11. GS01 an ID code indicates the type of transaction of the current functional

group (e.g., PO means Purchase Order). GS02 and GS03 identify the sender and

the recipient. GS04 and GS05 correspond to the date and time. GS06 refers to the

functional group control number which is same as the one in this functional group’s

trailer (GE in FuncGroupTrailer). GS07 indicates the responsible agency. GS08 has

the version or release identifier code for the standard.

type FunGroupHeader struct{

GS GSAattr

}

type FunGroupTrailer struct{

GE GEattr

}

Fig. 3.10. Header and Trailer of Functional Group Envelope

type GSatt struct{

GS01 string

GS02 string

GS03 string

GS04 string

GS05 string

GS06 string

GS07 string

GS08 string

}

Fig. 3.11. Attributes of Functional Group Header

21

3.5.3 Transaction Envelope

The TransEnvelope (Fig 3.12) has the similar structure as the previous two en-

velopes including Header, Envelope and Trailer.

type TransEnvelope struct{

Header TransHeader

Envelope Loops

Trailer TransTrailer

}

Fig. 3.12. Transaction Envelope Data Structure

The TransHeader structure has three fields. The ST in the TransHeader data

structure in Fig. 3.13 is the transaction set header indicating the beginning of a

transaction set. B10 refers to the beginning segment for the transportation carrier

shipment status message which is represented by the Loops sub-structures. MS3

refers to interline information and is optional. SE in the TransTrailer indicates the

end of the transaction set.

type TransHeader struct{

ST STAattr

B10 B10attr

MS3 []MS3attr

}

type TransTrailer struct{

SE SEattr

}

Fig. 3.13. Header and Trailer of Transaction Envelope

There are three fields in B10attr (Fig. 3.14). B1001 is the invoice number assigned

by the carrier, B1002 is the shipment identification number that is uniquely assigned

by the supplier and B1003 is a code that uniquely identifies a carrier.

The shipment status as previously mentioned is stored in the Loops sub-structure

which are discussed in the next section.

22

type B10att struct{

B1001 string

B1002 string

B1003 string

}

Fig. 3.14. Attributes of B10

3.5.4 Shipment Status

There are four loops used to represent the details the shipment status in EDI-214.

These are Loop1000, Loop1100, Loop1200 and Loop1300 shown in Fig. 3.15.

type Loops struct{

L1000 []Loop1000

L1100 []Loop1100

L1200 []Loop1200

L1300 []Loop1300

}

Fig. 3.15. Loops for Shipment Status

The fields in Loop1000 include transaction instructions such as the bill of lading,

handling instructions or unexpected lading.

The fields in Loop1100 (Fig. 3.16) specify the status of a shipment, such as the

reason for a status, the date and the time of the status and the date and time of

scheduled appointments. AT7 in Loop1100 indicates the shipment status details

including the status, the reason for the status and the time the status was reported.

MS1 refers to the location of the shipment consisting of either a) city and state, b)

longitude and latitude, c) postal code at the time the shipment status message was

sent. MS2 refers to the equipment or container owner and type. Field M7 field

contains the seal number used to close a shipment and is given by a supplier to a

carrier. If the seal is broken and the shipment is open (e.g., by customs), a new seal

number is assigned.

23

type Loop1100 struct{

AT7 AT7attr

MS1 MS1attr

MS2 MS2attr

M7 M7attr

}

Fig. 3.16. Loop1100 Data Structure

Loop1200 (Fig. 3.17) is used to identify a participant in terms of the company’s

name (N1, N2), address (N3) and geographic location information (N4).

type Loop1200 struct{

N1 N1attr

N2 N2attr

N3 N3attr

N4 N4attr

}

Fig. 3.17. Loop1200 Data Structure

type N1attr struct{

N101 string

N102 string

N103 string

N104 string

}

Fig. 3.18. Attribute of N1

N1 consists of multiple fields as shown in Fig. 3.18. N101 is an identification code

consisting of four components: CN (Consignee), SF (ship from), SH (shipper) and

ST (ship to). N102 contains the name of the company or the individual associated

withN101. N103 and N104 are qualifier and identification codes.

Loop1300 indicates the order identification details. It only has one field called

OID (Fig. 3.19) which specifies the purchase order number (OID02), lading quantity

(OID05), weight unit (OID06), weight (OID07) and volume (OID09). Other fields

are associated codes or qualifiers.

24

type OIDattr struct{

OID01 string

OID02 string

OID03 string

OID04 string

OID05 string

OID06 string

OID07 string

OID08 string

OID09 string

}

Fig. 3.19. Attributes of OID

3.6 Blockchain

Traditionally, supply chain partners can do business by exchanging documents.

This is actually the norm today in various countries and often for most international

trades. This process is inefficient, slow, and can cause delays and increase product

cost. In this thesis, we propose to use the blockchain technology, in order to make the

above data flow process efficient and resilient. A blockchain ledger can be considered

as a distributed database that holds a continuously increasing list of events grouped

into blocks [23]. The proposed framework has two types of ledgers: a private ledger

and a public ledger. The private ledger contains the details of the genesis events and

the custody events which are shared among trading partners. These events are not

chained thereby limiting the computing requirements for nodes belonging to trading

partners. The validity of each of these events can be easily verified by comparing

the hash value of the event in the private ledger to the corresponding hash value in

the public ledger. The public ledger acts as a reference and proof of validity for the

genesis events and the custody events in addition to being a permanent record for

monitoring events.

The local database of each node has five collections: NodeInfo, OrderParticipants,

PrivateEvents, tempPublicEvent, Blocks and tempBlocks.

25

• NodeInfo is used for storing the information about the node and allows the node

to communicate with the index server and other nodes in the network.

• OrderParticipants records the participants information. It contains an order ID

and a sub-structure consisting of all the partners involved in an order.

• PrivateEvents captures the details of a genesis event or a custody event.

• tempPublicEvent is used for temporarily storing events that are not yet part

of a block. Before a block is built, recent events are chained and stored in

tempPublicEvent until the block is completed.

• Blocks is used for chained blocks. The longest chain is accepted by every node

in the network as the public ledger of record.

• tempBlocks is used when multiple blocks are received at same time, or the

PreBloHashblock received does not match the latest block in the local database.

The local database of each monitor has four collections: MonitorInfo, OtherMon-

itors, tempPublicEvent and Blocks.

• MonitorInfo is used to store the information of the monitor. The document

uses the MonitorInfo structure shown in Fig. 3.3.

• tempPublicEvent is used for temporarily storing events that are not yet part of

a block. Before a block is built, pending events are chained until a new block

is completed.

• Blocks is used for storing chained blocks. It has the same structure as the one

used in the nodes.

• tempBlocks has the same purpose and structure of tempBlocks in a node’s

database.

26

Basically, monitors are responsible for building the public ledger. Since they do

not generate genesis events or custody events, the local database of monitors does

not include the PrivateEvents collection.

There are two kinds of information validation in the proposed system. The first

is the validation of events. The second is the validation of blocks. The events are

checked every time they are received. Therefore, there is no need to check them again

when they are chained or combined into a block in the public ledger.

The genesis event indicates a new shipment generated by an ERP. The admin-

istrative node is the only node that can generate a genesis event. Since this event

initializes a new shipment and establishes the order ID, the customer, the supplier

and the carrier, the genesis event does not need to be validated.

The custody event may involve two participants from two different organizations

or companies. This event is signed with the participants private keys before it is

sent. Normally, node A of the first participant signs the event first, then node B of

the second participant signs the message that has been previously signed by node A.

Node B then sends the doubly signed custody event and is considered as the event

generator. The details of a custody event is broadcasted to all trading partners in a

given shipment by the event generator. The nodes who receive the private custody

event check the message by using node A and node B’s public keys. This double

signatures mechanism improves the security of the private ledger. When the custody

event is received, it is checked. If the event is accepted, the node will save the custody

event into its local database. The node also calculates and stores the public version

of the event consisting of the hash value of the private event in the local copy of

the public ledger. The public version and the private version of the custody event

share the same EventID. The event generator is also responsible for sharing the public

version of the event with non-trading partners.

27

A monitoring event is generated by an external monitor. External monitors do not

have any information about the shipment except truckID and geolocation. The in-

formation in the monitoring event is validated through crowd-sourcing since multiple

monitors are expected to report the geolocation of a single truck.

The second validation is with respect to blocks. In the proposed system, a node

can propose a candidate block. In order to limit the number of proposed blocks that a

node can put forward, the node needs to find a nonce that satisfies a hash value with

a given format. For example, the hash value may include a number of leading zeros

making the process of computing a hash value for a block computationally expensive.

This strategy prevents nodes from submitting invalid blocks because other nodes

in the network can refuse the proposed block. Furthermore, it prevents changes

to the blockchain, since recalculating nonces for the entire chain is computationally

prohibitive. After the proposed block is received, other nodes validate the events in

the block. They accept the block only if the nonce is satisfied and all the public

events have EventHash identical to the ones stored in the local database of the node.

3.7 Processes

The proposed system has three main processes that manage events and blocks.

These processes are:

• Private Event Process which supports the sharing of private events among trad-

ing partners in a shipment.

• Public Event Process which allows the exchange and the posting of public events

to the public ledger.

• Building Block Process which combines multiple events into a block and vali-

dates each block in the public ledger.

28

3.7.1 Private Event Process

The genesis event and the custody event information is encapsulated into the Pri-

vateGCEvents structured message which is managed by the private event process.

An administrative node generates a genesis event by extracting data from the com-

pany’s ERP. A regular node triggers a custody event where the underlying message

is signed by two participants. For example, when a shipment is being transferred

from a supplier to a carrier, an employee of the supplier signs the custody event with

his private key to confirm the event. Subsequently, an employee of the carrier signs

the custody event and sends the event to the trading partners. Private events are

only shared among trading partners. Therefore, a monitor will never receive a pri-

vate event. As shown in Fig. 3.20, node A and node B represent an administrative

node and a regular node, respectively. Once the message is received from the ERP,

node A generates a unique ID for the event. If the event does not originate from the

ERP, it is already associated with a unique ID. This unique ID is generated by the

MongoDB database or its driver. The ID has 12 bytes where the first four bytes refer

to the seconds, the next three bytes are the machine identifier followed by two bytes

that represent the process id and the last three bytes are a random counter value.

The administrative node will then broadcast the event to the other partners. This

process is also applicable to custody events. The next step in the process consists

of generating the public event associated with the private event. The hash value of

the private event is computed by the event generator and the resulting public event

is sent to non-trading nodes. The process concludes by having the event generator

store the public event in its local copy of the public ledger.

3.7.2 Public Event Process

A public event can be one of two types (Fig. 3.21). The first type is the hash value

of a private genesis or custody event. The second type is a monitoring event. Any

participant in the network is able to send or receive a public event. The public events

29

Fig. 3.20. Private Event Process

received are chained together in order to build the public ledger which is maintained

by all participants.

30

In the case of a monitoring event, data is created when the monitor and the truck

exchange a message indicating physical proximity. The monitor generates a unique ID

for the event. It will also calculate the hash of the event and store it in the EventHash

field of the MonitorData data structure. Finally, the monitor broadcasts the event to

the participants in the public ledger.

Fig. 3.21. Public Event Process

In case of the public event derived from a private genesis or custody event, the

event generator calculates the hash value of the event and sends it to the non-trading

partners. This approach prevents the same event from being sent multiple times.

Once a public event is received, the last inserted event in the tempPublicEvent

collection is retrieved. If no previous event is found, the new event becomes the first

event in tempPublicEvent. If there is a previous event in the collection, the CurEve-

Hash of the event is used as the PreEveHash in the new event. The CurEveHash

of the new event is calculated based on the information in the PublicEvents data

31

structure. The event is inserted into the local copy of the public ledger. Every time

a public event inserted, the number of events in the tempPublicEvent collection is

checked. If the number exceeds a preset value, a new block is built by combining

multiple events. This process is discussed next.

There are three hash values in the public event data structure: EventHash, PreEve-

Hash and CurEveHash. EventHash is calculated by the event generator. PreEveHash

is retrieved from the previous event in the node’s local database. CurEveHash is

calculated by each node in the network including monitors based on the information

in the PublicEvents data structure. Since each node may receive public events in

different order, the PreEveHash of the events may differ which results in different

values of the CurEveHash. However, the EventHash is independent of the order in

which the events are received. Furthermore, it is consistent since it is computed by

the event generator. The Building Block Process which is described next is responsi-

ble for receiving the block and checking the validity of each EventHash. If the block

is accepted by the recipient node, the underlying order of the events is also accepted

and the local ordering of the events in the node is discarded.

3.7.3 Building Block Process

Any node or monitor can propose a block (Fig. 3.22). A block is built by using

the events in the order they are received by the node. If a nonce is found, the

node broadcasts its proposed block to other nodes. When the other nodes receive

the candidate block, they can check the validity of the block by recomputing the

CurBloHash. It the CurBloHash meets the value received with the nonce provided,

the nodes check each events’ EventHash value in the block by comparing it to the

values in the local database. If the result is different, the proposed block will be

discarded. If the candidate block is confirmed, the CurBloHash field of the previous

block is compared to the current block’s CurBloHash. The block is stored and chained

in the local database, if these two fields match. Otherwise the candidate block will be

32

save into a temporary collection called tempBlocks. The node may be missing a block

or there could be multiple branches of the public ledger. Resolving these collision

issues is the subject of future work.

33

Fig. 3.22. Building Block Process

34

4. IMPLEMENTATION

In this chapter, the implementation of the components of the proposed system is

presented specifically, the middle tier and data tier of the index server, nodes and

external monitors are introduced and the chaining of the events and blocks in the

public ledger blocks are described.

4.1 Index Server

The index server participates in two different functions: QueryByCode() and Up-

dateTime(). The first is listening for incoming requests for an IP address query for

a target node from a source node. The QueryByCode() function shown in Algorithm

4.1 is used to find the IP address of the target node. This function takes the node’s

ID as the query condition and returns a document if a match is found. The returned

document has the structure defined by the NodeInfo structure shown in Fig. 3.1

Function QueryByCode(ID string)
1 session, err := mgo.Dial(databaseAddr)
2 errhandler(err)
3 var result NodeInfo
4 c := session.DB(databaseName).C(collectionName)
5 c.FindId(bson.ObjectIdHex(hexID)).One(result)
6 return result

Algorithm 4.1. Query Node’s IP address

35

Function UpdateTime(ID string, time string)
1 var new NodeInfo
2 var old NodeInfo
3 old = queryByCode(hexID)
4 new = old
5 new.timestamp = time
6 session, err := mgo.Dial(databaseAddr)
7 errhandler(err)
8 d := session.DB(database).C(collection)
9 d.Update(old,new)

10 return

Algorithm 4.2. Update Node Information

The UpdateTime() (Algorithm 4.2) function is invoked with the ID of the node

issuing a heartbeat message. This function first calls the QueryByCode() function to

find the old document, then it updates the time and IP address associated with the

given ID in the index server’s local database. This process maintains the node’s IP

address up-to-date.

4.2 Nodes and External Monitors

There are three kinds of nodes in the proposed system: X86 nodes running on

X86 platforms, mobile nodes running on Android platforms and administrative nodes

which are also running on X86 platforms but have extended functionalities. These

nodes may participate in the private ledger, the public ledger or both.

The X86 nodes and administrative nodes have the the same architecture consist-

ing of three tiers: presentation tier, middle tier and data tier. The monitors only

have a middle tier and a data tier. The middle tier of an X86 node application is

implemented using Golang and Mgo (MongoDB driver for Golang). The monitors can

receive signals from sensors, generate and broadcast public events, update their local

database and build blocks. The X86 nodes and administrative nodes also have these

functionalities in addition to handling incoming user requests from the presentation

tier and generating and sending private events to their partners.

36

The mobile node also has a three-tier architecture. The presentation tier and

the middle tier are developed by using JAVA, Android studio and XML. Couchbase

Lite [20], a noSQL database similar to MongoDB, is used for the data tier. The

Couchbase Lite database consists of set of buckets where each bucket stores a list of

documents. The JAVA application accesses the database through the Couchbase lite

driver.

Most of the functionalities of the mobile node are the same as the X86 node.

The user interacts with the application via the presentation tier. The middle tier is

responsible for sending/receiving shipment information updates to/from other nodes

as well as for updating the local database. However, the mobile device application

needs additional functionalities since it is also used to acquire information from the

field. The mobile nodes do not propose a block, since finding a nonce is a compute

intensive process. They only receive candidate blocks and verify them.

For example, when the supplier transfers the shipment to the loading area for

pick-up by the carrier, the mobile node application scans the shipment information

by using, for instance, a QR code scanner. Once the information is read, the mobile

node will send the updated information to all the nodes that are involved in the

shipment.

The presentation tier in the administrative node is an HTTP server, the middle tier

is implemented by using Golang and the data tier is implemented by using MongoDB.

All the events messages that the administrative node receives are in JSON format and

can be stored directly into the MongoDB database without any additional parsing.

The administrative node provides remote database query functionalities for the mobile

nodes that have missed some events because they dropped out of the network.

4.3 Processes

The three processes discussed in the previous chapter are responsible for building

the two ledgers: the private ledger and the public ledger. The genesis events and

37

custody events are stored in the private ledger in the form of documents without

chaining. The hash values of genesis events and custody events, along with the

monitoring events are chained together in a unified data structure called PublicEvents.

This data structure constitutes the public ledger. Since every node in the network

keeps a copy of the public ledger, the events in the private ledger can be validated by

checking their hash value against the event’s EventHash field in the public ledger.

4.3.1 Private Event Process

The private event process starts with a TCP connection established through a

Listen() (Algorithm 4.3). Once a genesis or a custody event is sent from a trading

partner node, the target node accepts the connection by using the Accept() function

(Algorithm 4.4).

Function Listen(port string)
1 ln, err := net.Listen(“tcp”, port)
2 errhandler(err)
3 for do

Accept1(ln, port)
end

4 return

Algorithm 4.3. Listen Function

Function Accept(ln net.Listener, port string)
1 lnc, err := ln.Accept()
2 errhandler(err)
3 go ReceiveGCEvents(ln, port)
4 return

Algorithm 4.4. Accept Connection

The private event is received by calling the ReceiveGCEvents() function in Al-

gorithm 4.5. This function saves the event in node’s local database by using the

38

insertGCEvents() function (Algorithm 4.6). An EventID is uniquely assigned to each

event by the event generator. This ID is used in the two ledgers. If the node is the

event generator, it also calls Algorithm 4.7 to send the private event to the trading

partners.

Function ReceiveGCEvents(nc net.Conn, port string)
1 var msg []byte
2 var mPrivateGCEvents PrivateGCEvents
3 err := json.NewDecoder(nc).Decode(&msg)
4 errhandler(err)
5 e := json.Unmarshal(msg,&mPrivateGCEvents)
6 errhandler(e)
7 defer nc.Close()
8 if port == “:9999” then
9 mPrivateGCEvents.EventID=bson.NewObjectId()

end
10 insertGCEvents(mPrivateGCEvents,port)
11 return

Algorithm 4.5. Receive Private Events

The next step executes Algorithm 4.8, TransPrivateToPublic, which translates the

private event into a public event for posting to the public ledger. This function takes

the same EventID associated wtih the private event. It also calls hashPrivateEvent

(Algorithm 4.9) to compute the EventHash field of the event.

39

Function insertGCEvents(in PrivateGCEvents, port string)
1 session, err := mgo.Dial(“localhost”)
2 errhandler(err)
3 defer session.Close()
4 session.SetMode(mgo.Monotonic, true)
5 d := session.DB(“node”).C(“PrivateEvents”)
6 err = d.Insert(&in)
7 errhandler(err)
8 if port == “:9999” then
9 sendPrivateGCEvents(IP, in, “9997”)

end
10 transPrivateToPublic(result,port)
11 return

Algorithm 4.6. Insert Private Events

Function sendPrivateGCEvents(ipaddr string, mPrivateGCEvents
PrivateGCEvents, port string)

1 c, err := net.Dial(“tcp”, ipaddr+“:”+Port)
2 errhandler(err)
3 b,e := json.Marshal(mPrivateGCEvents)
4 errhandler(e)
5 e2 := json.NewEncoder(c).Encode(b)
6 errhandler(e2)
7 c.Close()
8 return

Algorithm 4.7. Send Private Events

The translated event is sent to other nodes by the event generator node. The

function HashPrivateEvent takes PrivateGCEvents as an input, transfers the JSON

message to byte code and uses SHA-256 to hash the message. It returns a byte array.

40

Function transPrivateToPublic(mPrivateGCEvents PrivateGCEvents, port
string)

1 var mPublicEvents PublicEvents
2 mPublicEvents.EventID=mPrivateGCEvents.EventID
3 mPublicEvents.Timestamp=mPrivateGCEvents.Timestamp
4 mPublicEvents.EventHash=hashPrivateEvent(mPrivateGCEvents)
5 if port == “:9999” then
6 sendPublicEvents(IP, in, “9996”)

end
7 insertPublicEvents(mPublicEvents)
8 return

Algorithm 4.8. Translate Private Events to Public Events

Function hashPrivateEvent(mPrivateGCEvents PrivateGCEvents)[32]byte
1 bytes, err := json.Marshal(mPrivateGCEvents)
2 errhandler(err)
3 sum := sha256.Sum256(bytes)
4 return sum

Algorithm 4.9. Hash Private Event

4.3.2 Public Event Process

In order to receive a public event, both Listen() and Accept() are called. Re-

ceivePublicEvents (Algorithm 4.10) is called from within the Accept() function. If

the node is a monitor, the ReceivePublicEvents function assigns a unique ID to the

monitoring event and computes an EventHash based on the MonitorData by using

Algorithm 4.11. The monitor will also broadcast the events to all nodes in the net-

work. This step is similar to the one used to broadcast a translated private event. If

the current node is the event generator, it sends the public event by calling Algorithm

4.12.

41

Function ReceivePublicEvents(nc net.Conn, port string)
1 var msg []byte
2 var mPublicEvents PublicEvents
3 err := json.NewDecoder(nc).Decode(&msg)
4 errhandler(err)
5 e := json.Unmarshal(msg,&mPublicEvents)
6 errhandler(e)
7 defer nc.Close()
8 errhandler(err)
9 if port == “:9998” then

10 mPublicEvents.EventID=bson.NewObjectId()
11 mPublicEvents.EventHash=
12 hashMonitorData(mPublicEvents.MonitorData)

13 sendPublicEvents(IP, mPublicEvents, “9996”)

end
14 insertPublicEvents(mPublicEvents)
15 return

Algorithm 4.10. Receive Public Events

Function hashMonitorData(mMonitorData MonitorData)[32]byte
1 bytes, err := json.Marshal(mMonitorData)
2 errhandler(err)
3 sum := sha256.Sum256(bytes)
4 return sum

Algorithm 4.11. Hash Monitor Data

42

Function sendPublicEvents(ipaddr string, mPublicEvents PublicEvents, port
string)

1 c, err := net.Dial(“tcp”, ipaddr+“:”+Port)
2 errhandler(err)
3 b,e := json.Marshal(mPublicEvents)
4 errhandler(e)
5 e2 := json.NewEncoder(c).Encode(b)
6 errhandler(e2)
7 c.Close()
8 return

Algorithm 4.12. Send Public Events

The final step consists of inserting the public event into the nodes’s local database

by calling insertPublicEvents(). The function (Algorithm 4.13) checks if the tempPub-

licEvent collection is empty. If there are no events in the tempPublicEvent collection,

the received public event will be the first event in a block. The PreEveHash field has

the same value as EventHash’s. If there is more than one event in the collection, the

function finds the last inserted event by using the LastEventID. This is a global vari-

able that keeps track of the last event inserted. The CurEveHash of the last event is

used as PreEveHash of the current event. This action chains the two events together.

InsertPublicEvents() also checks the number of events in the tempPublicEvent col-

lection. Once the number exceeds a preset value, the function buildBlock() is called.

The events that will form the new block will be extracted from the tempPublicEvent

collection. The process of building a block is discussed next.

43

Function insertPublicEvents(mPublicEvents PublicEvents)
1 var results []PublicEvents
2 var result PublicEvents
3 session, err := mgo.Dial(“localhost”)
4 errhandler(err)
5 defer session.Close()
6 session.SetMode(mgo.Monotonic, true)
7 c := session.DB(“node”).C(“tempPublicEvent”)
8 err = c.Find(nil).All(&results)
9 errhandler(err)

10 if len(results) == 0 then
11 mPublicEvents.PreEveHash=mPublicEvents.EventHash
12 LastEventID=mPublicEvents.EventID

else
13 c.FindId(bson.ObjectId(LastEventID)).One(&result)
14 LastEventID=mPublicEvents.EventID
15 mPublicEvents.PreEveHash=result.CurEveHash

end
16 PreEveHash=mPublicEvents.PreEveHash
17 mPublicEvents.CurEveHash=hashPublicEvent(mPublicEvents)
18 err = c.Insert(&mPublicEvents)
19 errhandler(err)
20 num, :=c.Find(nil).Count()
21 i:=0
22 if num¿presetValue then
23 buildBlock(results)
24 for range results do
25 c.Remove(bson.ObjectIdHex(results[i].EventID))
26 i++

end

end
27 return

Algorithm 4.13. Insert Public Events

44

Function hashPublicEvent(mPublicEvents PublicEvents)[32]byte
1 bytes, err := json.Marshal(mPublicEvents)
2 errhandler(err)
3 sum := sha256.Sum256(bytes)
4 return sum

Algorithm 4.14. Hash Public Event

4.3.3 Building Block Process

The buildBlock (Algorithm 4.15) function has similar functionalities to that of the

function insertPublicEvents. It checks the Blocks collection to see if it is empty and

initializes the first block if needed. The block is built locally by hashing (Algorithm

4.16) and then sending (Algorithm 4.17) the block to other nodes. However, the block

is considered as a candidate block as long as it is not approved by other nodes. The

validation of a block across all nodes in the network including resolving collisions and

multiple branches in the public ledger is the subject of future work.

45

Function buildBlock(results []PublicEvents)
1 var mBlock Blocks
2 var resultss []Blocks
3 var result Blocks
4 mBlock.BlockID=bson.NewObjectId()
5 mBlock.Timestamp=time.Now().UTC().String()
6 a:=make([]PublicEvents, len(results))
7 mBlock.Event=a
8 i:=0
9 for range results do

10 mBlock.Event[i]=results[i]
11 i++

end
12 session, err := mgo.Dial(“localhost”)
13 errhandler(err)
14 defer session.Close()
15 session.SetMode(mgo.Monotonic, true)
16 c := session.DB(“node”).C(“Blocks”)
17 err = c.Find(nil).All(&resultss)
18 errhandler(err)
19 if len(resultss) == 0 then
20 mBlock.PreBloHash=hashBlcok(mBlock)
21 LastBlockID=mBlock.BlockID

else
22 c.FindId(bson.ObjectId(LastBlockID)).One(&result)
23 LastBlockID=mBlock.BlockID
24 mBlock.PreBloHash=result.CurBloHash

end
25 var bHash [32]byte
26 setHash := make([]byte, 32)
27 found:=false
28 mBlock.Nonce=0
29 for found!=true do
30 bHash=hashBlcok(mBlock)
31 if bytes.Compare(bHash[:], setHash[:])==-1 then
32 found=true

end
33 mBlock.Nonce++

end
34 mBlock.CurBloHash=bHash
35 err = c.Insert(&mBlock)
36 errhandler(err)
37 sendBlock(mBlock)
38 return

Algorithm 4.15. Build Block

46

Function hashBlcok(mBlocks Blocks)[32]byte
1 bytes, err := json.Marshal(mBlocks)
2 errhandler(err)
3 sum := sha256.Sum256(bytes)
4 return sum

Algorithm 4.16. Hash Blocks

Function sendBlock(ipaddr string, mBlocks Blocks, port string)
1 c, err := net.Dial(“tcp”, ipaddr+“:”+Port)
2 errhandler(err)
3 b,e := json.Marshal(mBlocks)
4 errhandler(e)
5 e2 := json.NewEncoder(c).Encode(b)
6 errhandler(e2)
7 c.Close()
8 return

Algorithm 4.17. Send Candidate Block

4.4 Testing

The test scenario discussed in this chapter demonstrates how both the public

ledger and the private ledgers are constructed. The testing environment consists

of three nodes and one monitor. The testing focuses on the exchange between the

nodes. For clarity, exchanges between the nodes and the index server are skipped

and the emphasis is placed on the public and the private ledgers. Node A in the test

scenario is an administrative node which belongs to company A. Node B is a node

which belongs to company B and node C is a node which belongs to company C. The

following five events are considered in the test scenario:

• Event 1: A genesis event that is generated by node A. It is an event related to

order 1 in which company A and company B are participating.

47

• Event 2: A custody event that is sent by node B. This is an event related to

order 2 which is being shared with company B and company C.

• Event 3: A monitoring event that is generated by an external monitor. It

consists of a public event that is sent to all nodes in the network. It represents

a geolocation update for order 2.

• Event 4: A custody event that is generated by node B. This is an event related

to order 1 in which company A and company B are participating.

• Event 5: A monitoring event that is generated by an external monitor. It

consists of a public event that is sent to all nodes in the network and represents

a geolocation update for order 1.

Two sub-networks are created by the above test scenario. One is shared by node

A and node B for order 1. The other sub-network is shared by node B and node C

for order 2. These subnetworks are private to the trading partners. A global network

is also needed to support the exchange of public events that form the public ledger.

A simulator was created to trigger the five events mentioned above. For a genesis

event, the simulator mimics an ERP which is responsible for sending the genesis event

information to an administrative node. For a custody event, the simulator verifies

and signs the event. For a monitoring event, the simulator acts as a sensor that sends

geolocation data to the external monitors. The simulator uses TCP port “9999” to

communicate with nodes and port “9998” to communicate with monitors.

Select a number to trigger an event:

1: Node A generates a genesis event which is shared with node B

2: Node B generates a custody event which is shared with node C

3: Monitor A generates a monitoring event

4: Node B generates a custody event which is shared with node A

5: Monitor A generates a monitoring event

Enter selection is:

Fig. 4.1. Steps of the Test Scenario

48

The simulator is used to send event 1 (Fig. 4.1) which is received by node A. Then

node A assigns a unique ID for this genesis event. Since this is a private event, it is

only sent to node B. Node A will then insert this event into its local database in the

PrivateEvents collection. Node A is considered as the event generator. Therefore, it

will also translate the genesis event to a public event and compute the EventHash.

The translated public event is broadcasted to all the nodes in the entire network

by node A. Node B receives the detailed genesis event from node A and save it

to its local database. Node C and the monitor receive the public event and insert

it into the tempPublicEvent collection after chaining and calculating CurEveHash.

Since this is the first event in the database, the PreEveHash field has the same

hash value as EventHash. There is a counter in insertPublicEvents() function. If

this counter reaches a preset value, buildBlock() function is called to construct a

block. To demonstrate this functionality in the test scenario, this value is set to

4. Therefore, when there are more than four public events in the tempPublicEvent

collection, these events are used to form a candidate block. Fig. 4.2 and Fig. 4.3

show the PrivateEvents collection and the tempPublicEvent collection in Node A

after it receives event 1, respectively. There is one document in the PrivateEvents

collection. This private event is shared by node A and B. Therefore, node B also has

the same document in its PrivateEvents collection. For all nodes and the monitors,

the translated event is stored in the tempPublicEvent. Given this is the first event

in the public ledger, all tempPublicEvent collections across all nodes (Fig. 4.3) are

same.

This simulator is used next to trigger event 2. Subsequently, node B receives the

custody event. Node B assigns a unique ID to the event and executes the same steps

executed by node A. Node A does not participate in event 2. Therefore, it does not

receive the private event and the private ledger of node A remains unchanged (Fig.

4.2). However, node A receives the corresponding public event as any other node in

the network. This is shown in Fig. 4.4.

49

> db.PrivateEvents.find()

{ "_id" : ObjectId(‘‘595514e51d41c826a2b0894b"),

"timestamp" : "2017-1-1 10:00PM",

"eventdetails" :

{ "status" : "Order Placed",

"gpscordsx" : "", "gpscordsy" : ""

}

}

Fig. 4.2. PrivateEvents Collection of Node A after Event 1 is Received

> db.tempPublicEvent.find()

{ "_id" : ObjectId(‘‘595514e51d41c826a2b0894b"),

"timestamp" : "2017-1-1 10:00PM",

"monitordata" :

{ "monitorid" : "",

"truckid" : "",

"geoinfo" :

{ "gpscordsx" : "",

"gpscordsy" : ""

}

},

"eventhash" : BinData(0,"/IRbc+0y6HvQPHAKwQPIxxGlFAXkVe2WB1OXW

QzSe/I="),

"preevehash" : BinData(0,"/IRbc+0y6HvQPHAKwQPIxxGlFAXkVe2WB1OX

WQzSe/I="),

"curevehash" : BinData(0,"A6NwbhE4Gix7quTB+g1uCrNu/agoTDJbJkk0

QZf7EV0=")

}

Fig. 4.3. tempPublicEvent Collection of Node A after Event 1 is Received

In step 3, the simulator is used to trigger event 3 which is a monitoring event.

Monitoring events are public events. The monitor assigns a unique ID to the public

event and computes the EventHash. It saves the events into the tempPublicEvent

collection and also sends it to node A, B and C. Every time a public event is stored into

public ledger, the insertPublicEvents function is executed to retrieve the last inserted

public event. The value of CurEveHash for this event is used as the PreEveHash

50

> db.tempPublicEvent.find()

{ "_id" : ObjectId(‘‘595514e51d41c826a2b0894b"),

"timestamp" : "2017-1-1 10:00PM",

"monitordata" :

{ "monitorid" : "",

"truckid" : "",

"geoinfo" :

{ "gpscordsx" : "",

"gpscordsy" : ""

}

},

"eventhash" : BinData(0,"/IRbc+0y6HvQPHAKwQPIxxGlFAXkVe2WB1OX

WQzSe/I="),

"preevehash" : BinData(0,"/IRbc+0y6HvQPHAKwQPIxxGlFAXkVe2WB1O

XWQzSe/I="),

"curevehash" : BinData(0,"A6NwbhE4Gix7quTB+g1uCrNu/agoTDJbJkk

0QZf7EV0=")

}

{ "_id" : ObjectId(‘‘595515221d41c811406c398f"),

"timestamp" : "2017-3-3 04:30PM",

"monitordata" :

{ "monitorid" : "",

"truckid" : "",

"geoinfo" :

{ "gpscordsx" : "",

"gpscordsy" : ""

}

},

"eventhash" : BinData(0,"5mDGKxSaXZCLmkfugYxpqbhoaIdzUJAnaQnT

jgsjwgo="),

"preevehash" : BinData(0,"A6NwbhE4Gix7quTB+g1uCrNu/agoTDJbJkk

0QZf7EV0="),

"curevehash" : BinData(0,"tNELVhCUwHQznOcyQ1spp3wxHtIcNqOhL/i

SKi4vDC0=")

}

Fig. 4.4. tempPublicEvent Collection of Node A after Event 2 is Received

for the current event. The tempPublicEvent collection of node A after the receipt of

public event 3 is shown in Fig. 4.5.

51

{ "_id" : ObjectId(‘‘595515491d41c8492a5ea800"),

"timestamp" : "2017-3-4 07:30PM",

"monitordata" :

{ "monitorid" : "",

"truckid" : "",

"geoinfo" :

{ "gpscordsx" : "16",

"gpscordsy" : "63"

}

},

"eventhash" : BinData(0,"oNAFBBMrmUP36CYh5UdIqz5IAFQsNG+LwpmRR

B08Kcw="),

"preevehash" : BinData(0,"tNELVhCUwHQznOcyQ1spp3wxHtIcNqOhL/iS

Ki4vDC0="),

"curevehash" : BinData(0,"iQ9VPUYwZS/M26aUbZEicbs01pzoNIhkeEZQ

wIuATSU=")

}

Fig. 4.5. New Document in tempPublicEvent Collection of Node A
after Event 3 is Received

Event 4 is same as event 1 except the event is sent by node B. Broadcasting event 5

is exactly same as for event 3. When event 5 is received by all nodes, the buildBlock()

function is invoked. All nodes and monitors in the network start building blocks. A

nonce is needed to build a block. The nodes including monitors in the network assign

a unique ID for the new block. They find the last block in the chain, increment the

nonce starting from zero until the required hash is found. This hash value is stored

in CurBloHash. The resulting block is considered as a candidate block until it is

validated by other nodes. This block is shown in Fig. 4.6 and Fig. 4.7.

52

> db.Blocks.find()

{ "_id" : ObjectId(‘‘595516071d41c826a2b0894c"),

"event" : [

{ "_id" : ObjectId(‘‘595514e51d41c826a2b0894b"),

"timestamp" : "2017-1-1 10:00PM",

"monitordata" :

{ "monitorid" : "",

"truckid" : "",

"geoinfo" :

{ "gpscordsx" : "",

"gpscordsy" : ""

}

},

"eventhash" : BinData(0,"/IRbc+0y6HvQPHAKwQPIxxGlFAXkVe2W

B1OXWQzSe/I="),

"preevehash" : BinData(0,"/IRbc+0y6HvQPHAKwQPIxxGlFAXkVe2

WB1OXWQzSe/I="),

"curevehash" : BinData(0,"A6NwbhE4Gix7quTB+g1uCrNu/agoTDJ

bJkk0QZf7EV0=")

},

{ "_id" : ObjectId(‘‘595515221d41c811406c398f"),

"timestamp" : "2017-3-3 04:30PM",

"monitordata" :

{ "monitorid" : "",

"truckid" : "",

"geoinfo" :

{ "gpscordsx" : "",

"gpscordsy" : ""

}

},

"eventhash" : BinData(0,"5mDGKxSaXZCLmkfugYxpqbhoaIdzUJAn

aQnTjgsjwgo="),

"preevehash" : BinData(0,"A6NwbhE4Gix7quTB+g1uCrNu/agoTDJ

bJkk0QZf7EV0="),

"curevehash" : BinData(0,"tNELVhCUwHQznOcyQ1spp3wxHtIcNqO

hL/iSKi4vDC0=")

},

Fig. 4.6. Candidate Block in Node A

53

{ "_id" : ObjectId(‘‘595515491d41c8492a5ea800"),

"timestamp" : "2017-3-4 07:30PM",

"monitordata" :

{ "monitorid" : "",

"truckid" : "",

"geoinfo" :

{ "gpscordsx" : "16",

"gpscordsy" : "63"

}

},

"eventhash" : BinData(0,"oNAFBBMrmUP36CYh5UdIqz5IAFQsNG+L

wpmRRB08Kcw="),

"preevehash" : BinData(0,"tNELVhCUwHQznOcyQ1spp3wxHtIcNqO

hL/iSKi4vDC0="),

"curevehash" : BinData(0,"iQ9VPUYwZS/M26aUbZEicbs01pzoNIh

keEZQwIuATSU=")

},

{ "_id" : ObjectId(‘‘5955156c1d41c811406c3990"),

"timestamp" : "2017-4-4 04:30PM",

"monitordata" :

{ "monitorid" : "",

"truckid" : "",

"geoinfo" :

{ "gpscordsx" : "",

"gpscordsy" : ""

}

},

"eventhash" : BinData(0,"WYNtQT18tZJmIk14D7n9EzH8Ob2q/KFa

ylKNyXpGcSM="),

"preevehash" : BinData(0,"iQ9VPUYwZS/M26aUbZEicbs01pzoNIh

keEZQwIuATSU="),

"curevehash" : BinData(0,"s1sji/sBHv5JNN8IKoH9ZaWh4dFZH16

9sQKS44JVbXs=")

}],

"timestamp" : "2017-06-29 15:00:23.512742763 +0000 UTC",

"nonce" : 8,

"preblohash" : BinData(0,"l+hAiPl/vyaY31rqxYijAZ0GxJLd0Kyy+lgZ

OF/adrE="),

"curblohash" : BinData(0,"HSo7KblHONS73Y4clZlqBFE1AhxAxbDOexPA

rcUG3SY=")

}

Fig. 4.7. Candidate Block in Node A cont.

54

5. CONCLUSION

This thesis presents a framework that supports the timely delivery of field informa-

tion during the physical distribution phase of supply chain. The proposed solution

is scalable and takes into consideration the privacy and validity of information being

exchanged. Moreover, because it is cost effective, the solution enables small, medium

as well as large businesses to interact in a dynamic and shipment-centric manner

through a private ledger that digitizes the transfer of each shipment from source to

destination. Information in the private ledger can be verified through a public ledger

which acts as a system of record for all events as well as maintain monitoring events.

The monitoring events reflect the movement of the shipment in real time. Both third

party monitors and nodes are engaged in the validation of the events in the public

ledger.

A scalable data model and several advanced data structures were designed to

support the information exchange among the various participants in the network in-

cluding the index server, nodes and external monitors. These data structures are

based on the EDI-214 standards and therefore support the interoperability of the

proposed system with existing supply chain information systems.

This thesis focuses on the middle tier and data tier of the proposed framework.

The blockchain technology is used to enable supply chain visibility by combining a set

of distributed databases. These databases implement a public ledger which contains

an immutable business record for all the events in the physical distribution phase of

supply chain. Custody events have corresponding entries in the public ledger. These

entries consist of the EventID and the EventHash value. The validity of the custody

events in the private ledger can be verified by comparing them to the correspond-

55

ing entries in the public ledger. The monitoring events are chained with the public

version of the genesis events and custody events in the pubic ledger. This approach

improves the validity of the information in the public ledger.

There are several areas for future extension to the proposed framework. These

include:

• Block verification: Several enhancement to the block verification can be consid-

ered. First, the difficulty of the computation of the hash value for a block needs

to be investigated and the number of events in a block needs to be adjusted

accordingly. In addition, mechanisms should be developed to handle block colli-

sion resulting from multiple blocks being received at the same time. In Bitcoin,

duplicate blocks are also chained to the blockchain and each branch is allowed

to grow as more blocks are received. The nodes in the network only consider

the longest blockchain. Overtime, only the longest chain will survive.

• Monitoring event verification: Shipment location information is collected by

third-party monitors. Relying on a single monitoring event may not infer suf-

ficient reliability. Multiple monitoring events are needed. In fact, the level of

trust of the public ledger is directly proportional to the number of monitors

involved in the network and the number of sighting of a given truck. Analyzing

the trust level of the public ledger based on the number of monitoring events is

an area for future work.

In conclusion, the proposed framework is a cost-efficient and scalable solution for

supply chain visibility. Even though the system is still in the prototype phase, it

demonstrates the ability of the framework to deliver field information to all stake-

holders in pseudo real-time. The blockchain technology is a current trend in supply

chain system. We believe that the proposed architecture is a practical solution that

takes into consideration business requirements.

REFERENCES

56

REFERENCES

[1] K. L. Croxton, S. J. Garcia-Dastugue, D. M. Lambert, and D. S. Rogers, “The
supply chain management processes,” The International Journal of Logistics
Management, vol. 12, no. 2, pp. 13–36, 2001.

[2] A. Leon, Enterprise resource planning. McGraw-Hill Education, 2014.

[3] R. Sudarsan, S. J. Fenves, R. D. Sriram, and F. Wang, “A product information
modeling framework for product lifecycle management,” Computer-aided design,
vol. 37, no. 13, pp. 1399–1411, 2005.

[4] M. Barratt and A. Oke, “Antecedents of supply chain visibility in retail supply
chains: a resource-based theory perspective,” Journal of operations management,
vol. 25, no. 6, pp. 1217–1233, 2007.

[5] C. L. Iacovou, I. Benbasat, and A. S. Dexter, “Electronic data interchange and
small organizations: Adoption and impact of technology,” MIS quarterly, pp.
465–485, 1995.

[6] D. Crockford, “The application/json media type for javascript object
notation (json),” 2006 (accessed June 10, 2017). [Online]. Available:
https://tools.ietf.org/html/rfc4627.

[7] K. Chodorow, MongoDB: the definitive guide. ” O’Reilly Media, Inc.”, 2013.

[8] S. Li and B. Lin, “Accessing information sharing and information quality in
supply chain management,” Decision support systems, vol. 42, no. 3, pp. 1641–
1656, 2006.

[9] R. Karpinski, “E2open at one,” InternetWeek, August, vol. 1, 2001.

[10] F. Andera and D. Derringer, “(”systems, applications, products in data process-
ing”) sap: Implications for computer information systems,” Journal of Computer
Information Systems, vol. 39, no. 1, pp. 72–75, 1998.

[11] J. Holmström, “Business process innovation in the supply chain–a case study
of implementing vendor managed inventory,” European journal of purchasing &
Supply Management, vol. 4, no. 2-3, pp. 127–131, 1998.

[12] M. Parfett, What is EDI?: a guide to electronic data interchange. Blackwell
Pub, 1992.

[13] M. Swan, Blockchain: Blueprint for a new economy. ” O’Reilly Media, Inc.”,
2015.

[14] L. P. Nian and D. Chuen, “Introduction to bitcoin,” Handbook of Digital Cur-
rency: Bitcoin, Innovation, Financial Instruments, and Big Data, p. 1, 2015.

57

[15] N. Andrade, M. Mowbray, A. Lima, G. Wagner, and M. Ripeanu, “Influences
on cooperation in bittorrent communities,” in Proceedings of the 2005 ACM
SIGCOMM workshop on Economics of peer-to-peer systems. ACM, 2005, pp.
111–115.

[16] G. Fox, “Peer-to-peer networks,” Computing in Science & Engineering, vol. 3,
no. 3, pp. 75–77, 2001.

[17] S. Guha and N. Daswani, “An experimental study of the skype peer-to-peer voip
system,” Cornell University, Tech. Rep., 2005.

[18] S. Ramamurthy, “Leveraging blockchain to improve food supply chain
traceability,” 2017 (accessed February 10, 2017). [Online]. Avail-
able: https://www.ibm.com/blogs/blockchain/2016/11/leveraging-blockchain-
improve-food-supply-chain-traceability/.

[19] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,”
Ethereum Project Yellow Paper, vol. 151, 2014.

[20] D. Ostrovsky and Y. Rodenski, “Couchbase lite on android,” in Pro Couchbase
Server. Springer, 2014, pp. 283–292.

[21] Z. Wei-ping, L. Ming-Xin, and C. Huan, “Using mongodb to implement text-
book management system instead of mysql,” in Communication Software and
Networks (ICCSN), 2011 IEEE 3rd International Conference. IEEE, 2011, pp.
303–305.

[22] The EDI interchange structure, 2017 (accessed July 6, 2017). [Online].
Available: https://www.ibm.com/support/knowledgecenter/en/SSDKJ8 6.2.0/
com.ibm.wpg.entadv.doc/config/hub/edi interchange struct.html.

[23] M. Pilkington, “Blockchain technology: principles and applications,” Research
Handbook on Digital Transformations, 2015.

